Advertisement

G-Quadruplexes and Metal Ions

  • Nancy H. Campbell
  • Stephen NeidleEmail author
Chapter
Part of the Metal Ions in Life Sciences book series (MILS, volume 10)

Abstract

Metal ions stabilize quadruplex nucleic acids by coordinating the O6 guanine atoms from G-quartets. These quartets form the basic motif of quadruplex structures. This article systematically surveys the available crystallographic data on native quadruplexes, their ligand complexes and (in one instance) a protein complex. Three categories of quadruplex are examined, tetramolecular, bimolecular, and intramolecular: all are formed by telomeric nucleic acid sequences from human or ciliate organisms.

Keywords

crystal structures ion channel metal ion coordination Protein Data Bank quadruplex 

Notes

Acknowledgments

This work was supported by a CRUK Programme Grant to S. Neidle.

References

  1. 1.
    M. Gellert, M. N. Lipsett, D. R. Davies, Proc. Natl. Acad. Sci. USA 1962, 48, 2013-2018.CrossRefPubMedGoogle Scholar
  2. 2.
    S. Arnott, R. Chandrasekaran, C. M. Marttila, Biochem. J. 1974, 141, 537-543.PubMedGoogle Scholar
  3. 3.
    J. T. Davies, Angew. Chem. Int. Ed. 2004, 43, 668-698.CrossRefGoogle Scholar
  4. 4.
    S. Burge, G. N. Parkinson, P. Hazel, A. K. Todd, S. Neidle, Nucleic Acids Res. 2006, 34, 5402-5415.CrossRefPubMedGoogle Scholar
  5. 5.
    S. Neidle, Therapeutic Applications of Quadruplex Nucleic Acids. Academic Press, San Diego, USA, 2011.Google Scholar
  6. 6.
    F. B. Howard, H. T. Miles, Biochemistry 1982, 21, 6736-6745.CrossRefPubMedGoogle Scholar
  7. 7.
    P. Balagurumoorthy, S. K. Brahmachari, J. Biol. Chem. 1994, 269, 21858-21869PubMedGoogle Scholar
  8. 8.
    N. V. Hud, J. Plavec, in Quadruplex Nucleic Acids, Eds S. Neidle, S. Balasubramanian, Royal Society of Chemistry, Cambridge, UK, 2006.Google Scholar
  9. 9.
    R. Ida, G. Wu, J. Amer. Chem. Soc. 2008, 130, 3590-3602.CrossRefGoogle Scholar
  10. 10.
    G. Laughlan, A. I. Murchie, D. G. Norman, M. H. Moore, P. C. Moody, D. M. Lilley, B. Luisi, Science 1994, 265, 520-524; K. Phillips, Z. Dauter, A. I. Murchie, D. M. Lilley, B. Luisi, J. Mol. Biol. 1997, 273, 171-182.Google Scholar
  11. 11.
    G. N. Parkinson, M. P. H. Lee, S. Neidle, Nature 2002, 417, 876-880.CrossRefPubMedGoogle Scholar
  12. 12.
    Y. Wang, D. J. Patel, Structure 1993, 1, 263-282.CrossRefPubMedGoogle Scholar
  13. 13.
    C. Kang, X. Xhang, R. Ratliff, R. Moysis, A. Rich, Nature 1992, 356, 126-131.CrossRefPubMedGoogle Scholar
  14. 14.
    P. Schultze, N. V. Hud, F. W. Smith, J. Feigon, Nucleic Acids Res. 1994 , 27, 3018-3028; P. Schultze, F. W. Smith, J. Feigon, Structure 1994 , 2, 221-233.Google Scholar
  15. 15.
    S. M. Haider, G. N. Parkinson, S. Neidle, J. Mol. Biol. 2002, 320, 189-200.CrossRefPubMedGoogle Scholar
  16. 16.
    S. Neidle, Curr. Opin. Struct. Biol 2009, 19, 239-250CrossRefPubMedGoogle Scholar
  17. 17.
    S. Neidle, G. N. Parkinson, Biochimie 2008, 90, 1184-1196.CrossRefPubMedGoogle Scholar
  18. 18.
    H. M. Berman, T. Battistuz, T. N. Bhat, W. F. Bluhm, P. E. Bourne, K. Burkhardt, Z. Feng, G. L. Gilliland, L. Iype, S. Jain, P. Fagan, J. Marvin, D. Padilla, V. Ravichandran, B. Schneider, N. Thanki, H. Weissig, J. D. Westerbrook, C. Zardecki, Acta Crystallogr. 2002, D58, 899-907.Google Scholar
  19. 19.
    G. R. Clark, P. D. Pytel, C. J. Squire, S. Neidle, J. Amer. Chem. Soc. 2003, 125, 4066-4067.CrossRefGoogle Scholar
  20. 20.
    C. Creze, B. Rinaldi, R. Haser, P. Bouvet, P. Gouet, Acta Crystallogr. 2007, D63, 682-688.Google Scholar
  21. 21.
    M. P. H. Lee, G. N. Parkinson, P. Hazel, S. Neidle, J. Amer. Chem. Soc. 2007, 129, 10106-10107.CrossRefGoogle Scholar
  22. 22.
    C. Cáceres, G. Wright, C. Gouyette, G. Parkinson, J. A. Subirana, Nucleic Acids Res. 2004, 32, 1097-1102.CrossRefPubMedGoogle Scholar
  23. 23.
    J. Deng, Y. Xiong, M. Sundaralingam, Proc. Natl. Acad. Sci. USA 2001, 98, 13665-13670.CrossRefPubMedGoogle Scholar
  24. 24.
    B. Pan, K. Shi, M. Sundaralingam, J. Mol. Biol. 2006, 363, 451-459.CrossRefPubMedGoogle Scholar
  25. 25.
    N. H. Campbell, D. L. Smith, A. P. Reszka, S. Neidle, D. O’Hagan, Org. Biomol. Chem. 2011, 9, 1328-1331.CrossRefPubMedGoogle Scholar
  26. 26.
    M. L. Gill, S. A. Strobel, J. P. Loria, Nucleic Acids Res. 2006, 34, 4506-4514.CrossRefPubMedGoogle Scholar
  27. 27.
    S. M. Haider, G. N. Parkinson, S. Neidle, J. Mol. Biol. 2003, 326, 117-125.CrossRefPubMedGoogle Scholar
  28. 28.
    N. H. Campbell, M. Patel, A. B. Tofa, R. Ghosh, G. N. Parkinson, S. Neidle, Biochemistry 2009, 48, 1675-1680.CrossRefPubMedGoogle Scholar
  29. 29.
    M. P. Horvath, S. C. Schultz, J. Mol. Biol. 2001, 310, 367-377.CrossRefPubMedGoogle Scholar
  30. 30.
    G. N. Parkinson, R. Ghosh, S. Neidle, Biochemistry 2007, 46, 2390-2397.CrossRefPubMedGoogle Scholar
  31. 31.
    G. N. Parkinson, F. Cuenca, S. Neidle, J. Mol. Biol. 2008, 381, 1145-1156.CrossRefPubMedGoogle Scholar
  32. 32.
    N. H. Campbell, G. N. Parkinson, A. P. Reszka, S. Neidle, J. Amer. Chem. Soc. 2008, 130, 6722-6724.CrossRefGoogle Scholar
  33. 33.
    G. W. Collie, S. M. Haider, S. Neidle, G. N. Parkinson, Nucleic Acids Res. 2010, 38, 5569-5580.CrossRefPubMedGoogle Scholar
  34. 34.
    G. W. Collie, S. Sparapani, G. N. Parkinson, S. Neidle, J. Amer. Chem. Soc. 2011, 133, 2721-2728.CrossRefGoogle Scholar
  35. 35.
    D. Renčiuk, I. Kejnovská, P. Školáková, K. Bednářová, J. Motlová, M. Vorlíčková, Nucleic Acids Res. 2009, 37, 6625-6634.CrossRefPubMedGoogle Scholar
  36. 36.
    Y. Xue, Z. Y. Kan, O. Wang, Y. Yao, J. Liu, Y. H. Hao, Z. Tan, J. Amer. Chem. Soc. 2007, 129, 11185-11191.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.CRUK Biomolecular Structure Group, The School of PharmacyUniversity of LondonLondonUK

Personalised recommendations