Alternative DNA Base Pairing through Metal Coordination

  • Guido H. CleverEmail author
  • Mitsuhiko Shionoya
Part of the Metal Ions in Life Sciences book series (MILS, volume 10)


Base-pairing in the naturally occurring DNA and RNA oligonucleotide duplexes is based on π-stacking, hydrogen bonding, and shape complementarity between the nucleobases adenine, thymine, guanine, and cytosine as well as on the hydrophobic-hydrophilic balance in aqueous media. This complex system of multiple supramolecular interactions is the product of a long-term evolutionary process and thus highly optimized to serve its biological functions such as information storage and processing. After the successful implementation of automated DNA synthesis, chemists have begun to introduce artificial modifications inside the core of the DNA double helix in order to study various aspects of base pairing, generate new base pairs orthogonal to the natural ones, and equip the biopolymer with entirely new functions. The idea to replace the hydrogen bonding interactions with metal coordination between ligand-like nucleosides and suitable transition metal ions culminated in the development of a plethora of artificial base-pairing systems termed “metal base-pairs” which were shown to strongly enhance the DNA duplex stability. Furthermore, they show great potential for the use of DNA as a molecular wire in nanoscale electronic architectures. Although single electrons have proven to be transmitted by natural DNA over a distance of several base pairs, the high ohmic resistance of unmodified oligonucleotides was identified as a serious obstacle. By exchanging some or all of the Watson-Crick base pairs in DNA with metal complexes, this problem may be solved. In the future, these research efforts are supposed to lead to DNA-like materials with superior conductivity for nano-electronic applications. Other fields of potential application such as DNA-based supramole­cular architecture and catalysis may be strongly influenced by these developments as well. This text is meant to illustrate the basic concepts of metal-base pairing and give an outline over recent developments in this field.


coordination chemistry DNA metal-base pairing nanotechnology 



G.H.C. thanks the “Fonds der Chemischen Industrie” and the “Deutsche Forschungsgemeinschaft” (IRTG 1422 – Metal Sites in Biomolecules) for generous support. This work was supported by grants-in-Aids from MEXT of Japan and the Global COE Program for Chemistry Innovation.


  1. 1.
    H. Lodish, A. Berk, S. L. Zipursky, P. Matzudaira, D. Baltimore, J. Darnell, Molecular Cell Biology, 6th edn, WH Freeman and Co, New York, 2007.Google Scholar
  2. 2.
    (a) S. Jäger, G. Rasched, H. Kornreich-Leshem, M. Engeser, O. Thum, M. Famulok, J. Am. Chem. Soc. 2005, 127, 15071; (b) P. M. E. Gramlich, C. T. Wirges, J. Gierlich, T. Carell, Org. Lett. 2008, 10, 249.Google Scholar
  3. 3.
    (a) F. A. Aldaye, A. Palmer, H. F. Sleiman, Science 2008, 321, 1795; (b) U. Feldkamp, C. M. Niemeyer, Angew. Chem. Int. Ed. 2006, 45, 1856; (c) M. Endo, H. Sugiyama, ChemBioChem 2009, 10, 2420; (d) F. C. Simmel, Angew. Chem. Int. Ed. 2008, 47, 5884; (e) F. A. Aldaye, P. K. Lo, P. Karam, C. K. Mclaughlin, G. Cosa, H. F. Sleiman, Nat. Nanotechnol. 2009, 4, 349; (f) A. Heckel, M. Famulok, Biochimie 2008, 90, 1096.Google Scholar
  4. 4.
    G. E. Moore, Electronics 1965, 38, 114.Google Scholar
  5. 5.
    (a) C. M. Niemeyer, Angew. Chem. Int. Ed. 2001, 40, 4128; (b) K. V. Gothelf, T. H. LaBean, Org. Biomol. Chem. 2005, 3, 4023; (c) J. Wengel, Org. Biomol. Chem. 2004, 2, 277; (d) J. J. Storhoff, C. A. Mirkin, Chem. Rev. 1999, 99, 1849; (e) T. Nguyen, A. Brewer, E. Stulz, Angew. Chem. Int. Ed. 2009, 48, 1974; (f) M. D. Sorensen, M. Petersen, J. Wengel, Chem. Comm. 2003, 2130; (g) D. J. Hurley, Y. Tor, J. Am. Chem. Soc. 1998, 120, 2194.Google Scholar
  6. 6.
    (a) F. Seela, Y. He, J. Org. Chem. 2003, 68, 367; (b) S. A. Benner, Acc. Chem. Res. 2004, 37, 784.Google Scholar
  7. 7.
    A. T. Krueger, E. T. Kool, Chem. Biol. 2009, 16, 242.CrossRefPubMedGoogle Scholar
  8. 8.
    A. Okamoto, K. Kanatani, I. Saito, J. Am. Chem. Soc. 2004, 126, 4820.CrossRefPubMedGoogle Scholar
  9. 9.
    (a) N. C. Seeman, Nature 2003, 421, 427; (b) N. C. Seeman, Int. J. Nanotechnol. 2005, 2, 348.Google Scholar
  10. 10.
    H. T. Maune, S. Han, R. D. Barish, M. Bockrath, W. A. Goddard III, P. W. K. Rothemund, E. Winfree, Nat. Nanotechnol. 2010, 5, 61.CrossRefPubMedGoogle Scholar
  11. 11.
    P. W. K. Rothemund, Nature 2006, 440, 297.CrossRefPubMedGoogle Scholar
  12. 12.
    H. Yan, Science 2004, 306, 2048.CrossRefPubMedGoogle Scholar
  13. 13.
    A. Somoza, Angew. Chem. Int. Ed. 2009, 48, 9406.CrossRefGoogle Scholar
  14. 14.
    S. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, W. M. Shih, Nature 2009, 459, 414.CrossRefPubMedGoogle Scholar
  15. 15.
    E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M. M. Golas, B. Sander, H. Stark, C. L. P. D. Oliveira, J. S. Pedersen, V. Birkedal, F. Besenbacher, K. V. Gothelf, J. Kjems, Nature 2009, 459, 73.CrossRefPubMedGoogle Scholar
  16. 16.
    (a) X. Guo, A. A. Gorodetsky, J. Hone, J. K. Barton, C. Nuckolls, Nat. Nanotechnol. 2008, 3, 163; (b) R. Mas-Balleste, O. Castillo, P. J. Sanz Miguel, D. Olea, J. Gomez-Herrero, F. Zamora, Eur. J. Inorg. Chem. 2009, 2885.Google Scholar
  17. 17.
    (a) C. J. Murphy, M. R. Arkin, T. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, Science 1993, 262, 1025; (b) S. Breeger, M. von Meltzer, U. Hennecke, T. Carell, Chem. Eur. J. 2006, 12, 6469; (c) B. Elias, J. C. Genereux, J. K. Barton, Angew. Chem. Int. Ed. 2008, 47, 9067.Google Scholar
  18. 18.
    C. M. Niemeyer, M. Adler, Angew. Chem. Int. Ed. 2002, 41, 3779.CrossRefGoogle Scholar
  19. 19.
    (a) G. H. Clever, C. Kaul, T. Carell, Angew. Chem. Int. Ed. 2007, 46, 6226; (b) G. H. Clever, M. Shionoya, Coord. Chem. Rev. 2010 , 254, 2391.Google Scholar
  20. 20.
    (a) A. Rakitin, P. Aich, C. Papadopoulos, Y. Kobzar, A. S. Vedeneev, J. S. Lee, J. M. Xu, Phys. Rev. Lett. 2001, 86, 3670; (b) P. Aich, S. L. Labiuk, L. W. Tari, L. J. T. Delbaere, W. J. Roesler, K. J. Falk, R. P. Steer, J. S. Lee, J. Mol. Biol. 1999, 294, 477.Google Scholar
  21. 21.
    S. Nokhrin, M. Baru, J. S. Lee, Nanotechnology 2007, 18, 095205.CrossRefGoogle Scholar
  22. 22.
    (a) S. Katz, J. Am. Chem. Soc. 1952, 74, 2238; (b) S. Katz, Biochim. Biophys. Acta 1963, 68, 240.Google Scholar
  23. 23.
    (a) E. Buncel, C. Boone, H. Joly, R. Kumar, A. R. J. Norris, Inorg. Biochem. 1985, 25, 61; (b) Z. Kuklenyik, L. G. Marzilli, Inorg. Chem. 1996, 35, 5654.Google Scholar
  24. 24.
    (a) A. Ono, H. Togashi, Angew. Chem. Int. Ed. 2004, 43, 4300; (b) Y. Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, M. Kudo, Y. Tanaka,Y. Kondo, R. Sawa, T. Fujimoto, T. Machinami, A. Ono, J. Am. Chem. Soc. 2006, 128, 2172; (c) Y. Tanaka, S. Oda, H. Yamaguchi, Y. Kondo, C. Kojima, A. Ono, J. Am. Chem. Soc. 2007, 129, 244.Google Scholar
  25. 25.
    S. Johannsen, S. Paulus, N. Düpre, J. Müller, R. K. O. Sigel, J. Inorg. Biochem. 2008, 102, 1141.CrossRefPubMedGoogle Scholar
  26. 26.
    A. Ono, S. Cao, H. Togashi, M. Tashiro, T. Fujimoto, T. Machinami, S. Oda, Y. Miyake, I. Okamoto, Y. Tanaka, Chem. Comm. 2008, 4825.Google Scholar
  27. 27.
    D. A. Megger, J. Müller, Nucleosides, Nucleotides and Nucleic Acids 2010, 29, 27.CrossRefGoogle Scholar
  28. 28.
    R. Freeman, T. Finder, I. Willner, Angew. Chem. Int. Ed. 2009, 42, 7818.CrossRefGoogle Scholar
  29. 29.
    E. Ennifar, P. Walter, P. Dumas, Nucleic Acids Res. 2003, 31, 2671.CrossRefPubMedGoogle Scholar
  30. 30.
    J. Joseph, G. B. Schuster, Org. Lett. 2007, 9, 1843.CrossRefPubMedGoogle Scholar
  31. 31.
    A. A. Voityuk, J. Phys. Chem. B 2006, 110, 21010.CrossRefPubMedGoogle Scholar
  32. 32.
    S.-P. Liu, S.-H. Weisbrod, Z. Tang, A. Marx, E. Scheer, A. Erbe, Angew. Chem. Int. Ed. 2010, 49, 3313.CrossRefGoogle Scholar
  33. 33.
    (a) A. Houlton, A. R. Pike, M. A. Galindo, B. R. Horrocks, Chem. Comm. 2009, 1797; (b) G. A. Burley, J. Gierlich, M. R. Mofid, H. Nir, S. Tal, Y. Eichen, T. Carell, J. Am. Chem. Soc. 2006, 128, 1398.Google Scholar
  34. 34.
    J. Müller, Metallomics 2010, 2, 318.CrossRefPubMedGoogle Scholar
  35. 35.
    K. Tanaka, M. Shionoya, J. Org. Chem. 1999, 64, 5002.CrossRefGoogle Scholar
  36. 36.
    K. Tanaka, Y. Yamada, M. Shionoya, J. Am. Chem. Soc. 2002, 124, 8802.CrossRefPubMedGoogle Scholar
  37. 37.
    (a) E. Meggers, P. L. Holland, W. B. Tolman, F. E. Romesberg, P. G. Schultz, J. Am. Chem. Soc. 2000, 122, 10714; (b) N. Zimmermann, E. Meggers, P. G. Schultz, Bioorg. Chem. 2004, 32, 13.Google Scholar
  38. 38.
    S. Atwell, E. Meggers, G. Spraggon, P. G. Schultz, J. Am. Chem. Soc. 2001, 123, 364.CrossRefGoogle Scholar
  39. 39.
    K. Tanaka, M. Shionoya, Coord. Chem. Rev. 2007, 251, 2732.CrossRefGoogle Scholar
  40. 40.
    J. Müller, Eur. J. Inorg. Chem. 2008, 3749.Google Scholar
  41. 41.
    I. Okamoto, K. Iwamoto, Y. Watanabe, Y. Miyake, A. Ono, Angew. Chem. Int. Ed. 2009, 48, 1648.CrossRefGoogle Scholar
  42. 42.
    N. Zimmermann, E. Meggers, P. G. Schultz, J. Am. Chem. Soc. 2002, 124, 13684.CrossRefPubMedGoogle Scholar
  43. 43.
    L. Zhang, E. Meggers, J. Am. Chem. Soc. 2005, 127, 74.CrossRefPubMedGoogle Scholar
  44. 44.
    H. Weizman, Y. Tor, J. Am. Chem. Soc. 2001, 123, 3375.CrossRefPubMedGoogle Scholar
  45. 45.
    (a) C. Switzer, S. Sinha, P. H. Kim, B. D. Heuberger, Angew. Chem. Int. Ed. 2005, 44, 1529; (b) C. Switzer, D. Shin, Chem. Commun. 2005, 1342.Google Scholar
  46. 46.
    M. J. Gait (Ed.), Oligonucleotide Synthesis: A Practical Approach, IRL Press, New York, 1990.Google Scholar
  47. 47.
    C. A. Schalley (Ed.), Analytical Methods in Supramolecular Chemistry, Wiley-VCH, Weinheim, 2007.Google Scholar
  48. 48.
    K. Tanaka, A. Tengeiji, T. Kato, N. Toyama, M. Shiro, M. Shionoya, J. Am. Chem. Soc. 2002, 124, 12494.CrossRefPubMedGoogle Scholar
  49. 49.
    (a) M. K. Schlegel, L.-O. Essen, E. Meggers, J. Am. Chem. Soc. 2008, 130, 8158; (b) M. K. Schlegel, L. Zhang, N. Pagano, E. Meggers, Org. Biomol. Chem. 2009, 7, 476.Google Scholar
  50. 50.
    Y. Takezawa, K. Tanaka, M. Yori, S. Tashiro, M. Shiro, M. Shionoya, J. Org. Chem. 2008, 73, 6092.CrossRefPubMedGoogle Scholar
  51. 51.
    Y. Takezawa, W. Maeda, K. Tanaka, M. Shionoya, Angew. Chem. Int. Ed. 2009, 48, 1081.CrossRefGoogle Scholar
  52. 52.
    T. Ihara, T. Ishii, N. Araki, A. W. Wilson, A. Jyo, J. Am. Chem. Soc. 2009, 131, 3826.CrossRefPubMedGoogle Scholar
  53. 53.
    (a) G. H. Clever, K. Polborn, T. Carell, Angew. Chem. Int. Ed. 2005, 44, 7204; (b) G. H. Clever, Y. Söltl, H. Burks, W. Spahl, T. Carell, Chem. Eur. J. 2006, 12, 8708; (c) G. H. Clever, T. Carell, Angew. Chem. Int. Ed. 2007, 46, 250.Google Scholar
  54. 54.
    D. Böhme, N. Düpre, D. A. Megger, J. Müller, Inorg. Chem. 2007, 46, 10144.CrossRefGoogle Scholar
  55. 55.
    (a) J. Müller, D. Böhme, N. Düpre, M. Mehring, F.-A. Polonius, J. Inorg. Biochem. 2007, 101, 470; (b) J. Müller, D. Böhme, P. Lax, M. Morell Cerda, M. Roitzsch, Chem. Eur. J. 2005, 11, 6246.Google Scholar
  56. 56.
    J. K. Klosterman, Y. Yamauchi, M. Fujita, Chem. Soc. Rev. 2009, 38, 1714.CrossRefPubMedGoogle Scholar
  57. 57.
    S. Johannsen, S. Paulus, N. Düpre, J. Müller, R. K. O. Sigel, J. Inorg. Biochem. 2008, 102, 1141.CrossRefPubMedGoogle Scholar
  58. 58.
    K. Tanaka, A. Tengeiji, T. Kato, N. Toyama, M. Shionoya, Science 2003, 299, 1212.CrossRefPubMedGoogle Scholar
  59. 59.
    S. S. Mallajosyula, S. K. Pati, Angew. Chem. Int. Ed. 2009, 48, 4977.CrossRefGoogle Scholar
  60. 60.
    G. H. Clever, S. J. Reitmeier, T. Carell, O. Schiemann, Angew. Chem. Int. Ed. 2010, 49, 4927.CrossRefGoogle Scholar
  61. 61.
    (a) Y. Nakanishi, Y. Kitagawa, Y. Shigeta, T. Saito, T. Matsui, H. Miyachi, T. Kawakami, M. Okumura, K. Yamaguchi, Polyhedron 2009, 28, 1945; (b) T. Matsui, H. Miyachi, Y. Nakanishi, Y. Shigeta, T. Sato, Y. Kitagawa, M. Okumura, K. Hirao, J. Phys. Chem. B. 2009, 113, 12790.Google Scholar
  62. 62.
    F.-A. Polonius, J. Müller, Angew. Chem. Int. Ed. 2007, 46, 5602.CrossRefGoogle Scholar
  63. 63.
    S. Johannsen, N. Megger, D. Böhme, R. K. O. Sigel, J. Müller, Nat. Chem. 2010, 2, 229.CrossRefPubMedGoogle Scholar
  64. 64.
    J. Müller, Nature 2006, 444, 698.CrossRefPubMedGoogle Scholar
  65. 65.
    K. Tanaka, G. H. Clever, Y. Takezawa, Y. Yamada, C. Kaul, M. Shionoya, T. Carell, Nat. Nanotechnol. 2006, 1, 190.CrossRefPubMedGoogle Scholar
  66. 66.
    K. Yanagida, N. Hamochi, K. Sasano, I. Okamoto, A. Ono, Nucleic Acids Symp. Ser. 2007, 51, 179.CrossRefGoogle Scholar
  67. 67.
    (a) K. Kawai, Y. Osakada, M. Fujitsuka, T. Majima, J. Phys. Chem. B 2008, 112, 2144; (b) R. Yamagami, K. Kobayashi, A. Saeki, S. Seki, S. Tagawa, J. Am. Chem. Soc. 2006, 128, 2212.Google Scholar
  68. 68.
    S. Liu, G. H. Clever, Y. Takezawa, M. Kaneko, K. Tanaka, X. Guo, M. Shionoya, Angew. Chem. Int. Ed. 2011, 50, 8886.Google Scholar
  69. 69.
    C. Kaul, M. Müller, M. Wagner, S. Schneider, T. Carell, Nat. Chem. 2011, in press, DOI: 10.1038/nchem.1117.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute for Inorganic ChemistryGeorg-August University GöttingenGöttingenGermany
  2. 2.Department of Chemistry, Graduate School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations