Geowave Validation with Case Studies: Accurate Geology Reproduces Observations

Conference paper
Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 31)

Abstract

Boussinesq wave models have been introduced in tsunami science with considerable success. Methodical simulations of case studies provide a critical form of validation for these models. In current simulation techniques, developed since the 1998 Papua New Guinea event, carefully derived tsunami sources are input into a fourth order Boussinesq water wave simulation code (Geowave) capable of capturing wave dissipation, wave breaking, wave dispersion, and nonlinear wave activity. When the tsunami source is known, almost all tsunami observations can be captured with a single, direct Boussinesq simulation. Here, we summarize case studies for the following events: 125 k BP, Alika 2, Hawaii, US, 1908 Messina Strait, Italy, 1946 Unimak, Alaska, US, 1998 Sissano, Papua New Guinea, among other tsunami events.

Keywords

Boussinesq Earthquake Landslide Volcano Tsunami Mass failure Case studies Validation Runup Edge wave Breaking wave Convergence Grid size 

Notes

Acknowledgement

D. Tappin publishes with the permission of the Executive Director, British Geological Survey, NERC, United Kingdom.

References

  1. Abadie S, Morichon D, Grilli ST, Glockner S (2010) A three-fluid model to simulate waves generated by subaerial landslides. Coast Eng 57:779–794CrossRefGoogle Scholar
  2. Chen Q, Kirby JT, Dalrymple RA, Kennedy AB, Chawla A (2000) Boussinesq modeling of wave transformation, breaking and runup. II: two horizontal dimensions. J Waterway Port Coast Ocean Eng 126:48–56CrossRefGoogle Scholar
  3. Dalrymple RA, Grilli ST, Kirby JT (2006) Tsunamis and challenges for accurate modeling. Oceanography 19(1):142–151CrossRefGoogle Scholar
  4. Day SJ, Watts P, Grilli ST, Kirby JT (2005) Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami. Mar Geol 215(1–2):59–92CrossRefGoogle Scholar
  5. Favalli M, Boschi E, Mazzarini F, Pareschi MT (2009) Seismic and landslide source of the 1908 Straits of Messina tsunami (Sicily, Italy). Geophys Res Lett 36:L16304. doi: 10.1029/2009GL039135 CrossRefGoogle Scholar
  6. Fryer GL, Watts P, Pratson LF (2004) Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc. Mar Geol 203:201–218CrossRefGoogle Scholar
  7. Greene HG, Murai LY, Watts P, Maher NA, Fisher MA, Paull CE, Eichhubl P (2006) Submarine landslides in the Santa Barbara Channel as potential tsunami sources. Nat Haz Earth Sci Syst EGU 6:63–88CrossRefGoogle Scholar
  8. Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure part I: modeling, experimental validation, and sensitivity analysis. J Waterway Port Coast Ocean Eng ASCE 131(6):283–297CrossRefGoogle Scholar
  9. Grilli ST, Ioualalen M, Asavanant J, Shi F, Kirby JT, Watts P (2007) Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami. J Waterway Port Coast Ocean Eng ASCE 133(6):414–428CrossRefGoogle Scholar
  10. Ioualalen M, Pelletier B, Watts P, Regnier M (2006) Numerical modeling of the 26th November 1999 Vanuatu tsunami. J Geophys Res 111(C6). doi: 10.1029/2005JC003249
  11. Ioualalen M, Asavanant J, Kaewbanjak N, Grilli ST, Kirby JT, Watts P (2007) Modeling the 26 December 2004 Indian Ocean tsunami: case study of impact in Thailand. J Geophys Res 112. doi: 10.1029/2006JC003850
  12. Kennedy AB, Chen Q, Kirby JT, Dalrymple RA (2000) Boussinesq modeling of wave transformation, breaking and runup. I: one dimension. J Waterway Port Coast Ocean Eng 126:39–47CrossRefGoogle Scholar
  13. Kirby JT, Wei G, Chen Q, Kennedy AB, Dalrymple RA (1998) FUNWAVE 1.0. Fully nonlinear Boussinesq wave model. Documentation and user’s manual. Report CACR-98-06, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware, NewarkGoogle Scholar
  14. Kirby JT, Pophet N, Shi F, Grilli ST (2009) Basin scale tsunami propagation modeling using Boussinesq models: parallel implementation in spherical coordinates. In: Proceedings of the WCCE-ECCE-TCCE joint conference on earthquake and tsunami, Istanbul, 22–24 June, paper 100Google Scholar
  15. Lipman PW, Normark WR, Moore JG, Wilson JB, Gutmacher C (1988) The giant submarine Alika debris slide, Mauna Loa, Hawaii. J Geophys Res 93:4279–4299CrossRefGoogle Scholar
  16. Lynett P (2006) Nearshore modeling using high-order Boussinesq equations. J Waterway Port Coast Ocean Eng ASCE 132(5):348–357CrossRefGoogle Scholar
  17. Mattioli GS, Voight B, Linde AT, Watts P, Widiwijayanti C, Young SR, Elsworth D, Malin PE, Shalev E, Van Boskirk E, Johnston W, Sparks RSJ, Neuberg J, Bass V, Dunkley P, Herd R, Syers T, Williams P, Williams D (2007) Unique and remarkable dilatometer measurements of pyroclastic flow–generated tsunamis. Geology 35(1):25–28CrossRefGoogle Scholar
  18. McMurtry GM, Watts P, Fryer GJ, Smith JR, Imamura F (2004a) Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian islands. Mar Geol 203:219–233CrossRefGoogle Scholar
  19. McMurtry GM, Fryer GJ, Tappin DR, Wilkinson IP, Williams M, Fietzke J, Garbe-Schoenberg D, Watts P (2004b) Megatsunami deposits on Kohala volcano, Hawaii from flank collapse of Mauna Loa. Geology 32(9):741–744CrossRefGoogle Scholar
  20. Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian ridge. J Geophys Res 94(B12):17465–17484CrossRefGoogle Scholar
  21. Okada S (1985) Surface displacement due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154Google Scholar
  22. Rahiman TIH, Pettinga JR, Watts P (2007) The source mechanism and numerical modelling of the 1953 Suva tsunami, Fiji. Mar Geol 237(2):55–70CrossRefGoogle Scholar
  23. Tappin DR, Watts P, McMurtry GM, Lafoy Y, Matsumoto T (2001) The Sissano, Papua New Guinea Tsunami of July 1998 – offshore evidence on the source mechanism. Mar Geol 175:1–23CrossRefGoogle Scholar
  24. Tappin DR, Watts P, Grilli ST (2008a) The Papua New Guinea tsunami of July 17, 1998: anatomy of a catastrophic event. Nat Haz Earth Syst Sci NHESS 8:243–266CrossRefGoogle Scholar
  25. Tappin DR, Watts P, Grilli ST, Dubosq S, Billi A, Pophet N, Marani MP (2008b) The 1908 Messina tsunami some comments on the source: earthquake, submarine landslide or a combination of both? Eos Trans AGU 89(53): Fall Meet. Suppl., Abstract S41D-07Google Scholar
  26. Tinti S, Armigliato A (2003) The use of scenarios to evaluate the tsunami impact in southern Italy. Mar Geol 199(221)Google Scholar
  27. Walder JS, Watts P, Sorensen OE, Janssen K (2003) Water waves generated by subaerial mass flows. J Geophys Res 108(B5):2236–2255CrossRefGoogle Scholar
  28. Walder JS, Watts P, Waythomas CF (2006) Mapping tsunami hazards associated with debris flow into a reservoir. J Hyd Eng ASCE 132(1):1–11CrossRefGoogle Scholar
  29. Watts P (2006) Case study of the 1755 Portugal tsunami. Private consulting reportGoogle Scholar
  30. Watts P, Grilli ST, Kirby JT, Fryer GJ, Tappin DR (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat Haz Earth Sci Syst EGU 3(5):391–402CrossRefGoogle Scholar
  31. Watts P, Grilli ST, Tappin DR, Fryer GJ (2005) Tsunami generation by submarine mass failure part II: predictive equations and case studies. J Waterway Port Coast Ocean Eng ASCE 131(6):298–310CrossRefGoogle Scholar
  32. Waythomas CF, Watts P (2003) Numerical simulation of tsunami generation by pryoclastic flow at Aniakchak Volcano, Alaska. Geophys Res Lett 3014:1751–1755CrossRefGoogle Scholar
  33. Waythomas CF, Watts P, Walder JS (2006) Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine volcano, Alaska. Nat Haz Earth Syst Sci NHESS 6:671–685CrossRefGoogle Scholar
  34. Waythomas CF, Watts P, Shi F, Kirby JT (2009) Pacific Basin tsunami hazards associated with submarine mass flows in the Aleutian Islands of Alaska. Quat Sci Rev 28:1006–1019CrossRefGoogle Scholar
  35. Wei G, Kirby JT (1995) A time-dependent numerical code for extended Boussinesq equations’. J Waterway Port Coast Ocean Eng 120:251–261CrossRefGoogle Scholar
  36. Wei G, Kirby JT, Grilli ST, Subramanya R (1995) A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves. J Fluid Mech 294:71–92CrossRefGoogle Scholar
  37. Wei G, Kirby JT, Sinha A (1999) Generation of waves in Boussinesq models using a source function method. Coast Eng 36:271–299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Applied Fluids Engineering, IncLong BeachUSA
  2. 2.British Geological SurveyKeyworthUK

Personalised recommendations