Submarine Mass Movements and Their Consequences

  • Yasuhiro YamadaEmail author
  • Kiichiro Kawamura
  • Ken Ikehara
  • Yujiro Ogawa
  • Roger Urgeles
  • David Mosher
  • Jason Chaytor
  • Michael Strasser
Conference paper
Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 31)


Submarine mass movements represent major offshore geohazards due to their destructive and tsunami-generation potential. This potential poses a threat to human life as well as to coastal, near shore and offshore engineering structures. Recent examples of catastrophic submarine landslide events that affected human populations (including tsunamis) are numerous; e.g., Nice airport in 1979 (Dan et al. 2007), Finneidfjord in 1996 (e.g., L’Heureux et al., this volume, Steiner et al., this volume), Papua-New Guinea in 1998 (Tappin et al. 2001), Stromboli in 2002 (Chiocci et al. 2008), and the 2006 and 2009 failures in the submarine cable network around Taiwan (Hsu et al. 2008). The Great East Japan Earthquake of March 2011 also generated submarine landslides that may have amplified effects of the devastating tsunami as shown in Fryer et al. (2004). Given that 30% of the World’s population lives within 60 km of the coast, the hazard posed by submarine landslides is expected to grow as global sea level rises. In addition, the deposits resulting from such processes provide-various types of constraints to offshore development (Shipp et al. 2004), and have significant implications for non-renewable energy resource exploration and production (Weimer and Shipp 2004; Beaubouef and Abreu 2010).


Slope Failure Submarine Landslide Great East Japan Earthquake Submarine Pipeline Submarine Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beaubouef RT, Abreu V (2010) MTCs of the Brazos-Trinity slope system; thoughts on the sequence stratigraphy of MTCs and their possible roles in shaping hydrocarbon traps. In: Mosher DC, Shipp RC, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences, advances in natural and technological hazards research, vol 28. Springer, Dordrecht, pp 475–490CrossRefGoogle Scholar
  2. Bondevik S, Mangerud J, Dawson S, Dawson A, Lohne Ø (2005) Evidence for three North Sea tsunamis at the Shetland Islands between 8000 and 1500 years ago. Quat Sci Rev 24:1757–1775CrossRefGoogle Scholar
  3. Bryn P, Berg K, Forsberg CF, Solheim A, Kvalstad TJ (2005) Explaining the Storegga slide. Mar Petrol Geol 22:11–19CrossRefGoogle Scholar
  4. Camerlenghi A, Urgeles R, Fantoni L (2010) A database on submarine landslides of the Mediterranean Sea. In: Mosher DC, Shipp RC, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences, advances in natural and technological hazards research, vol 28. Springer, Dordrecht, pp 491–501Google Scholar
  5. Casalbore D, Chiocci FL, Scarascia MG, Tommasi P, Sposato A (2011) Flash-flood hyperpycnal flows generating shallow-water landslides at Fiumara mouths in Western Messina Strait (Italy), Mar Geophys Res 32(1–2):257–271. doi: 10.1007/s11001-011-9128-yGoogle Scholar
  6. Chiocci FL, Romagnoli C, Bosman A (2008) Morphologic resilience and depositional processes due to the rapid evolution of the submerged Sciara del Fuoco (Stromboli Island) after the December 2002 submarine slide and tsunami. Geomorphology 100:356–365CrossRefGoogle Scholar
  7. Dan G, Sultan N, Savoye B (2007) The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling. Mar Geol 245:40–64CrossRefGoogle Scholar
  8. Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modelling. Mar Geol 215:45–57CrossRefGoogle Scholar
  9. Fjeldskaar W, Lindholm C, Dehls JF, Fjeldskaar I (2000) Postglacial uplift, neotectonics and seismicity in Fennoscandia. Quat Sci Rev 19:1413–1422CrossRefGoogle Scholar
  10. Fryer GJ, Watts P, Pratson LF (2004) Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc. Mar Geol 203:201–218CrossRefGoogle Scholar
  11. Gamboa D, Alves T, Cartwright J, Terrinha P (2010) MTD distribution on a ‘passive’ continental margin: the Espírito Santo Basin (SE Brazil) during the Palaeogene. Mar Petrol Geol 27:1311–1324CrossRefGoogle Scholar
  12. Gee MJR, Gawthorpe RL, Friedmann SJ (2006) Triggering and evolution of a giant submarine landslide, offshore angola, revealed by 3D seismic stratigraphy and geomorphology. J Sediment Res 76:9–19CrossRefGoogle Scholar
  13. Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure part I: modeling, experimental validation, and sensitivity analysis. J Waterw Port Coast Ocean Eng 131:283–297CrossRefGoogle Scholar
  14. Haflidason H, Lien R, Sejrup HP, Forsberg CF, Bryn P (2005) The dating and morphometry of the Storegga slide. Mar Petrol Geol 22:123–136CrossRefGoogle Scholar
  15. Haugen KB, Løvholt F, Harbitz CB (2005) Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. Mar Petrol Geol 22:209–217CrossRefGoogle Scholar
  16. Hsu S-K, Kuo J, Lo C-L, Tsai C-H, Doo W-B, Ku C-Y, Sibuet J-C (2008) Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan. Terr Atmos Ocean Sci 19(6):767–772. doi: 10.3319/TAO.2008.19.6.767(PT) CrossRefGoogle Scholar
  17. Jung W-Y, Vogt PR (2004) Effects of bottom water warming and sea level rise on Holocene hydrate dissociation and mass wasting along the Norwegian-Barents Continental Margin. J Geophys Res 109:B06104. doi: 10.1029/2003JB002738 CrossRefGoogle Scholar
  18. Lee HJ (2008) Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Mar Geol. doi: 10.1016/j.margeo.2008.09.009
  19. Lee HJ, Syvitsky JPM, Parker G, Orange D, Locat J, Hutton JHW, Imran J (2002) Distinguishing sediment waves from slope failure deposits: field examples, including the “Humboldt Slide” and modelling results. Mar Geol 192:79–104CrossRefGoogle Scholar
  20. Lee HJ, Locat J, Desgagnés P, Parsons JD, McAdoo BD, Orange DL, Puig P, Wong FL, Dartnell P, Boulanger E (2007) Submarine mass movements on continental margins. In: Nittrouer AC, Austin JA, Field ME, Kravitz JH, Syvitski PM, Wiberg PL (eds) Continental margin sedimentation: from sediment transport to sequence stratigraphy. Blackwell Publishing Ltd., Oxford, pp 213–273Google Scholar
  21. Leroueil S, Vaunat J, Picarelli L, Locat J, Lee H, Faure R (1996) Geotechnical characterization of slope movements. In: Proceedings of the international symposium on landslides, Trondheim, 1, 53–74Google Scholar
  22. Locat J (2001) Instabilities along ocean margins: a geomorphological and geotechnical perspective. Mar Petrol Geol 18:503–512CrossRefGoogle Scholar
  23. Locat J, Meinnert J (eds) (2003) Submarine mass movements and their consequences: 1st International symposium: advances in natural and technological hazard research. Kluwer Academic/Springer, Dordrecht, 540 ppGoogle Scholar
  24. Lykousis V, Sakellariou D, Locat J (eds) (2007) Submarine mass movements and their consequences: advances in natural and technological hazard research, vol 27. Springer, Dordrecht, 424 ppGoogle Scholar
  25. McAdoo BG, Capone MK, Minder J (2004) Seafloor geomorphology of convergent margins: implications for Cascadia seismic hazard. Tectonics 23:TC6008. doi: 10.1029/2003TC001570 CrossRefGoogle Scholar
  26. Moran K, Farrington S, Massion E, Paull C, Stephen R, Trehu A, Ussler W (2006) SCIMPI: a new seafloor observatory system, OCEANS 2006. IEEE 1–6. doi: 10.1109/OCEANS.2006.307103
  27. Mosher DC, Shipp RC, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (2010) Submarine mass movements and their consequences: advances in natural and technological hazard research, vol 28. Springer, Dordrecht, 786 ppCrossRefGoogle Scholar
  28. Nadim F, Kvalstad TJ, Guttormsen T (2005) Quantification of risks associated with seabed instability at Ormen Lange. Mar Petrol Geol 22:311–318CrossRefGoogle Scholar
  29. Piper DJ, Cochonat P, Morrison ML (1999) The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar. Sedimentology 46:79–97Google Scholar
  30. Posamentier HW, Kolla V (2003) Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. J Sediment Res 73:367–388CrossRefGoogle Scholar
  31. Sakaguchi A, Kimura G, Strasser M, Screaton EJ, Curewitz D, Murayama M (2011) Episodic seafloor mud brecciation due to great subduction zone earthquakes. Geology 39:923–926. doi:10.1130/G32172.1Google Scholar
  32. Satake K, Atwater BF (2007) Long-term perspectives on giant earthquakes and tsunamis at subduction zones. Annu Rev Earth Planet Sci 35:349–374CrossRefGoogle Scholar
  33. Sawyer DE, Flemings PB, Dugan B, Germaine JT (2009) Retrogressive failures recorded in mass transport deposits in the Ursa Basin, Northern Gulf of Mexico. J Geophys Res 114:B10102. doi: 10.1029/2008JB006159 CrossRefGoogle Scholar
  34. Shipp RC, Nott JA, Newlin JA (2004) Physical characteristics and impact of mass transport complexes on deepwater jetted conductors and suction anchor piles. In: Offshore technology conference, paper number 16751-MS, DOI: 10.4043/16751-MSGoogle Scholar
  35. Solheim A, Berg K, Forsberg CF, Byrn P (2005) The storegga slide complex: repetitive large scale sliding with similar cause and development. Mar Petrol Geol 22:97–107Google Scholar
  36. Solheim A (ed) (2006) Submarine mass movements and their consequences. In: Proceeding of 2nd international conference, Oslo, 2005. Nor J Geol 86:151–372Google Scholar
  37. Stigall J, Dugan B (2010) Overpressure and earthquake initiated slope failure in the Ursa region, northern Gulf of Mexico. J Geophys Res 115:B04101CrossRefGoogle Scholar
  38. Strasser M, Moore GF, Kimura G, Kopf AJ, Underwood MB, Guo J, Screaton EJ (2011) Slumping and mass transport deposition in the Nankai fore arc: evidence from IODP drilling and 3-D reflection seismic data. Geochem Geophys Geosyst 12:Q0AD13CrossRefGoogle Scholar
  39. Sultan N, Cochonat P, Foucher J-P, Mienert J (2004a) Effect of gas hydrates melting on seafloor slope instability. Mar Geol 213:379–401CrossRefGoogle Scholar
  40. Sultan N, Cochonat P, Canals M, Cattaneo A, Dennielou B, Haflidason H, Laberg JS, Long D, Mienert J, Urgeles R, Vorren T, Wilson C (2004b) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar Geol 213:291–321CrossRefGoogle Scholar
  41. Sultan N, Gaudin M, Berne S, Canals M, Urgeles R, Lafuerza S (2007) Analysis of slope failures in submarine canyon heads: an example from the Gulf of Lions. J Geophys Res 112: F01009. doi:10.1029/2005JF000408Google Scholar
  42. Tappin DR, Watts P, McMurtry GM, Lafoy Y, Matsumoto T (2001) The Sissano, Papua New Guinea tsunami of July 1998 – offshore evidence on the source mechanism. Mar Geol 175:1–23CrossRefGoogle Scholar
  43. Tinti S, Manucci A, Pagoni A, Armigliato A, Zniboni F (2005) The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts. Nat Hazards Earth Sys Sci 5:763–775CrossRefGoogle Scholar
  44. Urgeles R, Leynaud D, Lastras G, Canals M, Mienert J (2006) Back-analysis and failure mechanisms of a large submarine slide on the Ebro continental slope, NW Mediterranean. Mar Geol 226:185–206CrossRefGoogle Scholar
  45. Urgeles R, Cattaneo A, Puig P, Liquete C, De Mol B, Sultan N, Trincardi F, Amblàs D (2011) A review of undulated sediment features on Mediterranean prodeltas: distinguishing sediment transport structures from sediment deformation. Mar Geophys Res. doi: 10.1007/s11001-011-9125-1
  46. von Huene R, Ranero CR, Watts P (2004) Tsunamigenic slope failure along the Middle America Trench in two tectonic settings. Mar Geol 203:303–317CrossRefGoogle Scholar
  47. Weimer P, Shipp C (2004) Mass transport complex: musing on past uses and suggestions for future directions. In: Offshore technology conference, paper number 16752-MS, Houston. DOI: 10.4043/16752-MSGoogle Scholar
  48. Yamada Y, Yamashita Y, Yamamoto Y (2010) Submarine landslides at subduction margins: insights from physical models. Tectonophys 484:156–167. doi: 10.1016/j.tecto.2009.09.007 CrossRefGoogle Scholar
  49. Zakeri A, Høeg K, Nadim F (2008) Submarine debris flow impact on pipelines – part I: experimental investigation. Coast Eng 55:1209–1218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Yasuhiro Yamada
    • 1
    Email author
  • Kiichiro Kawamura
    • 2
  • Ken Ikehara
    • 3
  • Yujiro Ogawa
    • 4
  • Roger Urgeles
    • 5
  • David Mosher
    • 6
  • Jason Chaytor
    • 7
  • Michael Strasser
    • 8
    • 9
  1. 1.Department of Earth Resources EngineeringKyoto UniversityKyotoJapan
  2. 2.Fukada Geological InstituteTokyoJapan
  3. 3.Geological Survey of JapanAISTTsukubaJapan
  4. 4.University of TsukubaTsukubamiraiJapan
  5. 5.Institut de Ciències del Mar (CSIC)BarcelonaSpain
  6. 6.Natural Resources Canada, Geological Survey of Canada – AtlanticBedford Institute of OceanographyDartmouthCanada
  7. 7.U.S. Geological Survey, Woods Hole Coastal and Marine Science CenterWoods HoleUSA
  8. 8.Geological InstituteETH ZurichZürichSwitzerland
  9. 9.MARUM – Centre for Marine Environmental SciencesUniversity of BremenBremenGermany

Personalised recommendations