Examining the Role of Logic in Teaching Proof

  • Viviane Durand-Guerrier
  • Paolo Boero
  • Nadia Douek
  • Susanna S. Epp
  • Denis Tanguay
Chapter
Part of the New ICMI Study Series book series (NISS, volume 15)

Abstract

Enhancing the teaching of mathematics in ways that support the development of students’ competence in argumentation and proof calls for increasing teachers’ awareness of the crucial role played by logical reasoning in proof. The chapter examines the relevance of, and interest in, teaching logic in order to foster competence with proof in the mathematics classroom. It reviews various positions on the role of logic in argumentation and proof, taking psychological studies into account, discusses these positions from an educational perspective, and offers some suggestions about how to modify curriculum to help students develop their logical reasoning abilities. A challenge for the future is to develop and implement the suggestions in research programmes.

Keywords

Mathematics Education Inference Rule Predicate Logic Conditional Statement Deductive Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We wish to thank the members of Working Group 2: Thomas Barrier, Thomas Blossier, Paolo Boero, Nadia Douek, Viviane Durand-Guerrier, Susanna Epp, Hui-yu Hsu, Kosze Lee, Juan Pablo Mejia-Ramos, Shintaro Otsuku, Cristina Sabena, Carmen Samper, Denis Tanguay, Yosuke Tsujiyama, Stefan Ufer, and Michelle Wilkerson-Jerde.

We are grateful for the support of the Institut de Mathématiques et de Modélisation de Montpellier, Université Montpellier 2 (France), IUFM C. Freinet, Université de Nice (France), Università di Genova (Italy), DePaul University (USA), and the Fonds québécois de recherche sur la société et la culture (FQRSC, Grant #2007-NP-116155 and Grant #2007-SE-118696).

We also thank the editors and the reviewers for their helpful feedback on earlier versions of these chapters.

References

  1. Barallobres, G. (2007). Introduction à l’algèbre par la généralisation: Problèmes didactiques soulevés. For the learning in mathematics, 27(1), 39–44.Google Scholar
  2. Barrier, T., Durand-Guerrier, V. & Blossier, T. (2009). Semantic and game-theoretical insight into argumentation and proof (Vol. 1, pp. 77–82).Google Scholar
  3. Bartolini Bussi, M. G., Boni, M., Ferri, F., & Garuti, R. (1999). Early approach to theoretical thinking: Gears in primary school. Educational Studies in Mathematics, 39, 67–87.CrossRefGoogle Scholar
  4. Battie, V. (2009) Proving in number theory at the transition from secondary to tertiary level: Between organizing and operative dimensions (Vol. 1, pp. 71–76).Google Scholar
  5. Blanché, R. (1970). La logique et son histoire. Paris: Armand Colin.Google Scholar
  6. Blossier, T., Barrier, T. & Durand-Guerrier, V. (2009). Proof and quantification (Vol. 1, pp. 83–88).Google Scholar
  7. Boero, P., Chiappini, G., Garuti, R. & Sibilla, A. (1995). Towards statements and proofs in elementary arithmetic. In Proceedings of PME-XIX (Vol. 3, pp. 129–136). Recife: Universitade Federal de Pernambuco.Google Scholar
  8. Boero, P., Douek, N., & Ferrari, P. L. (2008). Developing mastery of natural language: Approach to theoretical aspects of mathematics. In L. English (Ed.), Handbook of international research in mathematics education (pp. 262–295). New York/London: Routledge.Google Scholar
  9. Boero, P., Douek, N., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. In M. F. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of the 34th conference of the international group for the psychology of mathematics education (Vol. 1, pp. 179–205). Belo Horizonte: PME.Google Scholar
  10. Chellougui, F. (2009). L’utilisation des quantificateurs universels et existentiels en première année d’université, entre l’implicite et l’explicite. Recherches en didactique des Mathématiques, 29(2), 123–154.Google Scholar
  11. Cheng, P., Holyoak, K., Nisbett, R. E., & Oliver, L. (1986). Pragmatic versus syntactic approaches to training deductive reasoning. Cognitive Psychology, 18, 293–328.CrossRefGoogle Scholar
  12. Copi, I. (1954). Symbolic logic. New York: The Macmillan Company.Google Scholar
  13. Da Costa, N. C. A. (1997). Logiques classiques et non classiques: essai sur les fondements de la logique. Paris: Masson.Google Scholar
  14. Deloustal-Jorrand, V. (2004). Studying the mathematical concept of implication through a problem on written proofs, proceedings of the 28th conference of the international group for the psychology of mathematics education (Vol. 2, pp. 263–270). Bergen: Bergen University College.Google Scholar
  15. Douek, N. (2003). Les rapports entre l’argumentation et la conceptualisation dans les domaines d’expérience. Thèse, Université ParisV, Paris.Google Scholar
  16. Dreyfus, T. (1999). Why Johnny can’t prove. Educational Studies in Mathematics, 38, 85–109.CrossRefGoogle Scholar
  17. Dubinsky, E., & Yiparaki, O. (2000). On students understanding of AE and EA quantification. Research in Collegiate Mathematics Education IV, CBMS Issues in Mathematics Education, 8, 239–289.Google Scholar
  18. Durand-Guerrier, V. (2003). Which notion of implication is the right one ? From logical considerations to a didactic perspective. Educational Studies in Mathematics, 53, 5–34.CrossRefGoogle Scholar
  19. Durand-Guerrier, V. (2008). Truth versus validity in mathematical proof. ZDM The International Journal on Mathematics Education, 40(3), 373–384.CrossRefGoogle Scholar
  20. Durand-Guerrier, V., & Arsac, G. (2005). An epistemological and didactic study of a specific calculus reasoning rule. Educational Studies in Mathematics, 60(2), 149–172.CrossRefGoogle Scholar
  21. Durand-Guerrier, V., & Arsac, G. (2009). Analysis of mathematical proofs: Some questions and first answers (Vol. 1, pp. 148–153).Google Scholar
  22. Durand-Guerrier, V., & Ben Kilani, I. (2004). Négation grammaticale versus négation logique dans l’apprentissage des mathématiques. Exemple dans l’enseignement secondaire Tunisien, Les Cahiers du Français Contemporain, 9, 29–55.Google Scholar
  23. Duval, R. (1991). Structure du raisonnement déductif et apprentissage de la démonstration. Educational Studies in Mathematics, 22(3), 233–262.CrossRefGoogle Scholar
  24. Epp, S. (2003). The role of logic in teaching proof. The American Mathematical Monthly, 110(10), 886–899.CrossRefGoogle Scholar
  25. Epp, S. (2009). Proof issues with existential quantification (Vol. 1, pp. 154–159).Google Scholar
  26. Frege, G. (1882). Uber die Wissenschaftliche Berechtigung einer Begriffschrift. Zeitschrift fûr Philosophy und Philosophische kritik Nf, 81, 48–56.Google Scholar
  27. Gentzen, G. (1934). Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39(2), 176–210.Google Scholar
  28. Grenier, D., & Payan, C. (1998). Spécificités de la preuve et de la modélisation en mathématiques discrètes. Recherches en didactiques des mathématiques, 18(1), 59–99.Google Scholar
  29. Habermas, J. (2003). Truth and justification. Cambridge: MIT Press.Google Scholar
  30. Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics, 44, 5–23.CrossRefGoogle Scholar
  31. Hintikka, J. (1996). The principles of mathematics revisited. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  32. Hitt, F. (2006). L’argumentation, la preuve et la démonstration dans la construction des mathématiques: des entités conflictuelles ? Une lettre de Godefroy Guillaume Leibnitz à Chrétien Wolf (1713). In D. Tanguay (Ed.), Actes du colloque du Groupe des didacticiens des mathématiques du Québec (pp. 135–146). Montréal: Université du Québec à Montréal.Google Scholar
  33. Houzel, C. (1996). Analyse mathématique. Cours et exercices. Paris: Belin.Google Scholar
  34. Johnson-Laird, P. N. (1975). Models of deduction’. In R. J. Falmagne (Ed.), Reasoning: Representation and process in children and adults (pp. 7–54). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  35. Johnson-Laird, P. N. (1986). Reasoning without logic. In T. Meyers, K. Brown, & B. McGonigle (Eds.), Reasoning and discourse processes (pp. 14–49). London: Academic.Google Scholar
  36. Johnson-Laird, P. N., Legrenzi, P., & Legrenzi, M. (1972). Reasoning and a sense of reality. British Journal of Psychology, 63(3), 395–400.CrossRefGoogle Scholar
  37. Kieran, C., Drijvers, P., Boileau, A., Hitt, F., Tanguay, D., Saldanha, L., & Guzmán, J. (2006). Learning about equivalence, equality, and equation in a CAS environment: The interaction of machine techniques, paper-and-pencil techniques, and theorizing. In C. Hoyles, J. Lagrange, LH Son, & N. Sinclair (Eds.), Proceedings for the Seventeenth ICMI Study Conference: Technology Revisited, Hanoi : Hanoi University of Technology.Google Scholar
  38. Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  39. Lee, K. & Smith III, J.P. (2009). Cognitive and linguistic challenges in understanding proving (Vol. 2, pp. 21–26).Google Scholar
  40. Luria, A. R. (1976). The Cognitive Development: Its Cultural and Social Foundations. London: Harvard University Press.Google Scholar
  41. Mamona-Downs, J. & Downs, M. (2009). Proof status from a perspective of articulation (Vol. 2, pp. 94–99).Google Scholar
  42. Mariotti, A. (2006). Proof and proving in mathematics education. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 173–204). Rotterdam/Taipei: Sense.Google Scholar
  43. Mason, J. (2010). Mathematics education: Theory, practice & memories over 50 years. For the Learning of Mathematics, 30(3), 3–9.Google Scholar
  44. Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in Mathematics, 27, 249–266.CrossRefGoogle Scholar
  45. Morselli, F. & Boero, P. (2009). Habermas’ construct of rational behaviour as a comprehensive frame for research on the teaching and learning of proof (Vol. 2, pp. 100–105).Google Scholar
  46. Norenzayan, C., & Peng. (2007). Perception and cognition. In S. Kitayama & D. Cohen (Eds.), Handbook of cultural psychology (pp. 569–594). New York: The Guilford Press.Google Scholar
  47. Noveck, I. A., Lea, R. B., Davidson, G. M., & O’Brien, D. P. (1991). Human reasoning is both logical and pragmatic. Intellectica, 11, 81–109.Google Scholar
  48. Pólya, G. (1954). Mathematics and plausible reasoning: Volume 1: Induction and analogy in mathematics. Vol. 2: Patterns of plausible inference. Princeton: Princeton University Press.Google Scholar
  49. Quine, W. V. (1982). Methods of logic (4th ed., 1st ed. 1950). New York: Holt, Rinehart & Winston.Google Scholar
  50. Roh. (2009). Students’ understanding and use of logic in evaluation of proofs about convergence (Vol. 2, pp. 148–153).Google Scholar
  51. Selden, A., & Selden, J. (1995). Unpacking the logic of mathematical statements. Educational Studies in Mathematics, 29, 123–151.CrossRefGoogle Scholar
  52. Simpson, A. (1995). Developing a proving attitude. Conference Proceedings: Justifying and Proving in School Mathematics (pp. 39–46). London: Institute of Education, University of London.Google Scholar
  53. Sinaceur, H. (2001). Alfred Tarski, semantic shift, heuristic shift in metamathematics. Synthese, 126, 49–65.CrossRefGoogle Scholar
  54. Stenning, K., & Lambalgen, M. V. (2008). Human reasoning and cognitive science. Cambridge: Bradfors Books.Google Scholar
  55. Stenning, K., Cox, R., & Oberlander, J. (1995). Contrasting the cognitive effects of graphical and sentential logic teaching: Reasoning, representation and individual differences. Language and Cognitive Processes, 10(3–4), 333–354.CrossRefGoogle Scholar
  56. Tarski, A. (1944). The semantic conception of truth. Philosophy and Phenomenological Research, 4, 13–47.CrossRefGoogle Scholar
  57. Tarski, A. (1983). Logic, semantics and metamathematics, papers from 1923 to 1938. Indianapolis: John Corcoran.Google Scholar
  58. Thom, R. (1974). Mathématiques modernes et mathématiques de toujours, suivi de Les mathématiques « modernes », une erreur pédagogique et philosophique ? In R. Jaulin (Ed.), Pourquoi la mathématique ? (pp. 39–88). Paris: Éditions 10–18.Google Scholar
  59. Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–177.CrossRefGoogle Scholar
  60. Ufer, S., Heinze, A. & Reiss, K.(2009). What happens in students minds when constructing a geometric proof ? A cognitive model based on mental models (Vol. 2, pp. 239–244).Google Scholar
  61. van der Pal, J., & Eysink, T. (1999). Balancing situativity and formality: The importance of relating a formal language to interactive graphics in logic instruction. Learning and Instruction, 9(4), 327–341.CrossRefGoogle Scholar
  62. Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en didactique des mathématiques, 10(2), 133–170.Google Scholar
  63. Vygotsky, L. S. (1986). Thought and language (2nd ed.). Cambridge: MIT Press.Google Scholar
  64. Wason, P. C. (1966). Reasoning. In I. B. M. Foss (Ed.), New horizons in psychology. Harmondsworth: Penguin.Google Scholar
  65. Wason, P. C. (1977). Self-contradictions. In P. N. Johnson-Laird & P. C. Wason (Eds.), Thinking: Readings in cognitive science (pp. 114–128). New York: Cambridge University Press.Google Scholar
  66. Wittgenstein, L. (1921). Annalen der naturphilosophie [Tractatus logico-philosophicus], Leipzig (Ed. & Trans.). London: Routledge and Kegan Paul Ltd.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Viviane Durand-Guerrier
    • 1
  • Paolo Boero
    • 2
  • Nadia Douek
    • 3
  • Susanna S. Epp
    • 4
  • Denis Tanguay
    • 5
  1. 1.Département de mathématiques, I3M, UMR 5149Université Montpellier 2MontpellierFrance
  2. 2.Dipartimento di MatematicaUniversità di GenovaGenovaItalia
  3. 3.Institut Universitaire de Formation des MaîtresUniversité de NiceNiceFrance
  4. 4.Department of Mathematical SciencesDePaul UniversityChicagoUSA
  5. 5.Département de mathématiquesUniversité du Québec à Montréal (UQAM)MontrealCanada

Personalised recommendations