Radial Coupling and Adiabatic Correction for the LiRb Molecule

  • I. Jendoubi
  • H. Berriche
  • H. Ben Ouada
  • F. X. Gadea
Chapter
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 22)

Abstract

The radial couplings between the adiabatic states dissociating into Rb(5s, 5p, 4d, 6s, 6p, 5d, 7s, 6d) + Li(2s, 2p), \({\mathrm{Li}}^{+} +{ \mathrm{Rb}}^{-}\) and \({\mathrm{Li}}^{-} +{ \mathrm{Rb}}^{+}\) determined from accurate diabatic and adiabatic previous data for the LiRb molecule. The accuracy of adiabatic and diabatic results is shown by a comparison with previous ab initio calculations and experimental results. To evaluate the radial couplings we have used two methods which are numerical differentiation of the rotation matrix connecting the diabatic and adiabatic representations and the Hellmann-Feynman expression. The first and second derivatives present many peaks, associated to neutral-neutral and ionic-neutral crossings in the diabatic representation. These peaks can be interpreted from the diabatic potential energy curves. The radial coupling is then used to determine the adiabatic correction for several electronic states of LiRb molecule. This correction is about 100 cm− 1 for some electronic states around particular distances related to avoided crossings and peaks of the second derivative. It is added to the Born-Oppenheimer potential energy curves to estimate the change in spectroscopic constants, which is significant mainly for the higher excited states. The vibrational levels are evaluated using corrected and uncorrected potential energies to determine the vibronic shift for the 1Σ+ and 3Σ+ states. This shift, which is the difference between the adiabatic levels and the corrected ones, has been determined for 20 singlet and triplet Σ+ states. A shift of order 10 cm− 1 for some vibrational levels is observed, which shows the breakdown of the Born-Oppenheimer approximation.

Keywords

Internuclear Distance Potential Energy Curve Equilibrium Distance Spectroscopic Constant High Excited State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge support of this work by King Abdul Aziz City for Science and Technology (KACST) through the Long-Term Comprehensive National Plan for Science, Technology and Innovation program under Project No. 08-NAN148-7.

References

  1. 1.
    Thorsheim HR, Weiner J, Julienne PS (1987) Phys Rev Lett 58:2420CrossRefGoogle Scholar
  2. 2.
    Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seeuw F, Pillet P (1998) Phys Rev Lett 80:4402CrossRefGoogle Scholar
  3. 3.
    Weiner J, Bagnato VC, Zilio S, Julienne PS (1999) Rev Mod Phys 71:1CrossRefGoogle Scholar
  4. 4.
    Masnou-Seeuws F, Pillet P (2001) Adv Atom Mol Opt Phys 47:53CrossRefGoogle Scholar
  5. 5.
    Bahns JT, Stwalley WC, Gould PL (2000) Adv Atom Mol Opt Phys 42:171CrossRefGoogle Scholar
  6. 6.
    Rosker MJ, Rose TS, Zewail AH (1988) Chem Phys Lett 146:175CrossRefGoogle Scholar
  7. 7.
    Engel V, Metiu H, Almeida R, Zewail AH (1988) Chem Phys Lett 152:1CrossRefGoogle Scholar
  8. 8.
    Choi SE, Light JC (1989) J Chem Phys 90:2593CrossRefGoogle Scholar
  9. 9.
    Grønager M, Henriksen NE (1998) J Chem Phys 109:4335CrossRefGoogle Scholar
  10. 10.
    Balakrishnan N, Esry BD, Sadeghpour HR, Cornett ST, Cavagnero MJ (1999) Phys Rev A 60:1407CrossRefGoogle Scholar
  11. 11.
    Igel-Mann G, Wedig U, Fuentealba P, Stoll H (1986) J Chem Phys 84:5007CrossRefGoogle Scholar
  12. 12.
    Urban M, Sadlej AJ (1995) J Chem Phys 103:9692CrossRefGoogle Scholar
  13. 13.
    Korek M, Allouche AR, Kobeissi M, Chaalan A, Dagher M, Fakherddin F, Aubert-Frecon M (2000) Chem Phys 256:1CrossRefGoogle Scholar
  14. 14.
    Korek M, Younes G, AL-Shawa S. (2009) J Mol Struct (Theochem) 899:25Google Scholar
  15. 15.
    Jendoubi I, Berriche H, Ben Ouada H, Gadea FX (2011) J. Phys. Chem. A (submitted)Google Scholar
  16. 16.
    Jendoubi I, Berriche H, Ben Ouada H (2010) Unpublished work Conf Proc (in press)Google Scholar
  17. 17.
    Jensen JO, Yarkony DR (1988) J Chem Phys 89:975CrossRefGoogle Scholar
  18. 18.
    Bishop DM, Cheung LM (1977) Phys Rev A 16:640CrossRefGoogle Scholar
  19. 19.
    Kolos W, Wolniewicz L (1964) J Chem Phys 41:3663; (1965) 43:2429; 45 (1966) 509; 48 (1968) 3672; 49 (1968) 404; 50 (1969) 3228Google Scholar
  20. 20.
    Kolos W, Wolniewicz L (1963) Rev Mod Phys 35:473CrossRefGoogle Scholar
  21. 21.
    Bishop DM, Cheung LM (1979) J Mol Spectrosc 75:462CrossRefGoogle Scholar
  22. 22.
    Price RI (1978) Chem Phys 31:309CrossRefGoogle Scholar
  23. 23.
    Koxos W, Wolniewicz L (1964) J Chem Phys 41:3663CrossRefGoogle Scholar
  24. 24.
    Vidal CR, Stwalley WC (1982) J Chem Phys 77:883CrossRefGoogle Scholar
  25. 25.
    Chan YC, Harding DR, Stwalley WC, Vidal CR (1986) J Chem Phys 85:2437CrossRefGoogle Scholar
  26. 26.
    Berriche H (1995) Thèse Doctorat de l’Université Paul Sabatier, ToulouseGoogle Scholar
  27. 27.
    Gadea FX, Berriche H, Romero O, Villarreal P, Delgado Barrio G (1997) J Chem Phys 107:24Google Scholar
  28. 28.
    Gemperle F, Gadea FX (1999) J Chem Phys 110:11197CrossRefGoogle Scholar
  29. 29.
    Gemperle F, Gadea FX (1999) EuroPhys Lett 48:513CrossRefGoogle Scholar
  30. 30.
    Bishop DM, Cheung LM (1983) Chem Phys 78:1396Google Scholar
  31. 31.
    Bishop DM, Cheung LM (1983) Chem Phys 78:7265Google Scholar
  32. 32.
    Boutalib A, Gadéa FX (1992) J Chem Phys 97:1144CrossRefGoogle Scholar
  33. 33.
    Gadéa FX, Boutalib A (1993) J Phys Atom Mol Opt Phys 26:61CrossRefGoogle Scholar
  34. 34.
    Khelifi N, Oujia B, Gadéa FX (2001) J Chem Phys 117:879Google Scholar
  35. 35.
    Khelifi N, Zrafi W, Oujia B, Gadéa FX (2002) Phys Rev A 65:042513CrossRefGoogle Scholar
  36. 36.
    Zrafi W, Oujia B, Berriche H, Gadéa FX (2006) J Mol Struct (Theochem) 777:87CrossRefGoogle Scholar
  37. 37.
    Zrafi W, Oujia B, Gadéa FX (2006) J Phys B Atom Mol Opt Phys 39:1CrossRefGoogle Scholar
  38. 38.
    Gadéa FX (1987) Tèse d’Etat, Université Paul Sabatier, ToulouseGoogle Scholar
  39. 39.
    Gadéa FX, Kuntz PJ (1988) Mol Phys 63:27CrossRefGoogle Scholar
  40. 40.
    Gadéa FX (1987) Phys Rev A 36:2557CrossRefGoogle Scholar
  41. 41.
    Gadéa FX (1991) Phys Rev A 43:1160CrossRefGoogle Scholar
  42. 42.
    Gadéa FX, Pélissier M (1990) J Chem Phys 93:545CrossRefGoogle Scholar
  43. 43.
    Mabrouk N, Berriche H, Gadea FX (2007) AIP Conf Proc 963:23CrossRefGoogle Scholar
  44. 44.
    Mabrouk N, Berriche H (2009) AIP Conf Proc 1148:326CrossRefGoogle Scholar
  45. 45.
    Johnson VA (1941) Phys Rev 60:373CrossRefGoogle Scholar
  46. 46.

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • I. Jendoubi
    • 1
  • H. Berriche
    • 1
    • 2
  • H. Ben Ouada
    • 1
  • F. X. Gadea
    • 3
  1. 1.Laboratoire de Physique et Chimie des Interfaces, Département de Physique, Faculté des Sciences de MonastirUniversité de MonastirMonastirTunisia
  2. 2.Physics Department, College of ScienceKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Laboratoire de Chimie et Physique QuantiqueUMR5626 du CNRS Université Paul SabatierToulouse Cedex 4France

Personalised recommendations