Radial Coupling and Adiabatic Correction for the LiRb Molecule
Abstract
The radial couplings between the adiabatic states dissociating into Rb(5s, 5p, 4d, 6s, 6p, 5d, 7s, 6d) + Li(2s, 2p), \({\mathrm{Li}}^{+} +{ \mathrm{Rb}}^{-}\) and \({\mathrm{Li}}^{-} +{ \mathrm{Rb}}^{+}\) determined from accurate diabatic and adiabatic previous data for the LiRb molecule. The accuracy of adiabatic and diabatic results is shown by a comparison with previous ab initio calculations and experimental results. To evaluate the radial couplings we have used two methods which are numerical differentiation of the rotation matrix connecting the diabatic and adiabatic representations and the Hellmann-Feynman expression. The first and second derivatives present many peaks, associated to neutral-neutral and ionic-neutral crossings in the diabatic representation. These peaks can be interpreted from the diabatic potential energy curves. The radial coupling is then used to determine the adiabatic correction for several electronic states of LiRb molecule. This correction is about 100 cm− 1 for some electronic states around particular distances related to avoided crossings and peaks of the second derivative. It is added to the Born-Oppenheimer potential energy curves to estimate the change in spectroscopic constants, which is significant mainly for the higher excited states. The vibrational levels are evaluated using corrected and uncorrected potential energies to determine the vibronic shift for the 1Σ+ and 3Σ+ states. This shift, which is the difference between the adiabatic levels and the corrected ones, has been determined for 20 singlet and triplet Σ+ states. A shift of order 10 cm− 1 for some vibrational levels is observed, which shows the breakdown of the Born-Oppenheimer approximation.
Keywords
Internuclear Distance Potential Energy Curve Equilibrium Distance Spectroscopic Constant High Excited StateNotes
Acknowledgements
We acknowledge support of this work by King Abdul Aziz City for Science and Technology (KACST) through the Long-Term Comprehensive National Plan for Science, Technology and Innovation program under Project No. 08-NAN148-7.
References
- 1.Thorsheim HR, Weiner J, Julienne PS (1987) Phys Rev Lett 58:2420CrossRefGoogle Scholar
- 2.Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seeuw F, Pillet P (1998) Phys Rev Lett 80:4402CrossRefGoogle Scholar
- 3.Weiner J, Bagnato VC, Zilio S, Julienne PS (1999) Rev Mod Phys 71:1CrossRefGoogle Scholar
- 4.Masnou-Seeuws F, Pillet P (2001) Adv Atom Mol Opt Phys 47:53CrossRefGoogle Scholar
- 5.Bahns JT, Stwalley WC, Gould PL (2000) Adv Atom Mol Opt Phys 42:171CrossRefGoogle Scholar
- 6.Rosker MJ, Rose TS, Zewail AH (1988) Chem Phys Lett 146:175CrossRefGoogle Scholar
- 7.Engel V, Metiu H, Almeida R, Zewail AH (1988) Chem Phys Lett 152:1CrossRefGoogle Scholar
- 8.Choi SE, Light JC (1989) J Chem Phys 90:2593CrossRefGoogle Scholar
- 9.Grønager M, Henriksen NE (1998) J Chem Phys 109:4335CrossRefGoogle Scholar
- 10.Balakrishnan N, Esry BD, Sadeghpour HR, Cornett ST, Cavagnero MJ (1999) Phys Rev A 60:1407CrossRefGoogle Scholar
- 11.Igel-Mann G, Wedig U, Fuentealba P, Stoll H (1986) J Chem Phys 84:5007CrossRefGoogle Scholar
- 12.Urban M, Sadlej AJ (1995) J Chem Phys 103:9692CrossRefGoogle Scholar
- 13.Korek M, Allouche AR, Kobeissi M, Chaalan A, Dagher M, Fakherddin F, Aubert-Frecon M (2000) Chem Phys 256:1CrossRefGoogle Scholar
- 14.Korek M, Younes G, AL-Shawa S. (2009) J Mol Struct (Theochem) 899:25Google Scholar
- 15.Jendoubi I, Berriche H, Ben Ouada H, Gadea FX (2011) J. Phys. Chem. A (submitted)Google Scholar
- 16.Jendoubi I, Berriche H, Ben Ouada H (2010) Unpublished work Conf Proc (in press)Google Scholar
- 17.Jensen JO, Yarkony DR (1988) J Chem Phys 89:975CrossRefGoogle Scholar
- 18.Bishop DM, Cheung LM (1977) Phys Rev A 16:640CrossRefGoogle Scholar
- 19.Kolos W, Wolniewicz L (1964) J Chem Phys 41:3663; (1965) 43:2429; 45 (1966) 509; 48 (1968) 3672; 49 (1968) 404; 50 (1969) 3228Google Scholar
- 20.Kolos W, Wolniewicz L (1963) Rev Mod Phys 35:473CrossRefGoogle Scholar
- 21.Bishop DM, Cheung LM (1979) J Mol Spectrosc 75:462CrossRefGoogle Scholar
- 22.Price RI (1978) Chem Phys 31:309CrossRefGoogle Scholar
- 23.Koxos W, Wolniewicz L (1964) J Chem Phys 41:3663CrossRefGoogle Scholar
- 24.Vidal CR, Stwalley WC (1982) J Chem Phys 77:883CrossRefGoogle Scholar
- 25.Chan YC, Harding DR, Stwalley WC, Vidal CR (1986) J Chem Phys 85:2437CrossRefGoogle Scholar
- 26.Berriche H (1995) Thèse Doctorat de l’Université Paul Sabatier, ToulouseGoogle Scholar
- 27.Gadea FX, Berriche H, Romero O, Villarreal P, Delgado Barrio G (1997) J Chem Phys 107:24Google Scholar
- 28.Gemperle F, Gadea FX (1999) J Chem Phys 110:11197CrossRefGoogle Scholar
- 29.Gemperle F, Gadea FX (1999) EuroPhys Lett 48:513CrossRefGoogle Scholar
- 30.Bishop DM, Cheung LM (1983) Chem Phys 78:1396Google Scholar
- 31.Bishop DM, Cheung LM (1983) Chem Phys 78:7265Google Scholar
- 32.Boutalib A, Gadéa FX (1992) J Chem Phys 97:1144CrossRefGoogle Scholar
- 33.Gadéa FX, Boutalib A (1993) J Phys Atom Mol Opt Phys 26:61CrossRefGoogle Scholar
- 34.Khelifi N, Oujia B, Gadéa FX (2001) J Chem Phys 117:879Google Scholar
- 35.Khelifi N, Zrafi W, Oujia B, Gadéa FX (2002) Phys Rev A 65:042513CrossRefGoogle Scholar
- 36.Zrafi W, Oujia B, Berriche H, Gadéa FX (2006) J Mol Struct (Theochem) 777:87CrossRefGoogle Scholar
- 37.Zrafi W, Oujia B, Gadéa FX (2006) J Phys B Atom Mol Opt Phys 39:1CrossRefGoogle Scholar
- 38.Gadéa FX (1987) Tèse d’Etat, Université Paul Sabatier, ToulouseGoogle Scholar
- 39.Gadéa FX, Kuntz PJ (1988) Mol Phys 63:27CrossRefGoogle Scholar
- 40.Gadéa FX (1987) Phys Rev A 36:2557CrossRefGoogle Scholar
- 41.Gadéa FX (1991) Phys Rev A 43:1160CrossRefGoogle Scholar
- 42.Gadéa FX, Pélissier M (1990) J Chem Phys 93:545CrossRefGoogle Scholar
- 43.Mabrouk N, Berriche H, Gadea FX (2007) AIP Conf Proc 963:23CrossRefGoogle Scholar
- 44.Mabrouk N, Berriche H (2009) AIP Conf Proc 1148:326CrossRefGoogle Scholar
- 45.Johnson VA (1941) Phys Rev 60:373CrossRefGoogle Scholar
- 46.