Stress Ecology pp 131-159 | Cite as

Heavy Metals: Defense and Ecological Utilization

Chapter

Abstract

In its present form with its high diversity of aerobic pro- and eukaryotic organisms, life on earth only developed after the majority of heavy metals had been buried below the surface and after the majority of reduced iron had been oxidized to banded iron formations and, in turn, molecular oxygen could escape into the atmosphere (Schlesinger 1997; Krämer 2010). This separation of organisms from heavy metal deposits implies that the concurrence of both organisms and metals bears potential conflicts, forces organisms to handle such chemically stressful situations, and requires organisms to develop strategies to survive and evolve further and eventually to pass on the adverse challenge to competitors or predators.

Keywords

Heavy Metal Band Iron Formation Metal Homeostasis Hyperaccumulating Plant Natural Resistance Associate Macrophage Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Audet P, Charest C (2006) Effects of AM colonization on ‘wild tobacco’ grown in zinc-contaminated soil. Mycorrhiza 16:277–283PubMedCrossRefGoogle Scholar
  2. Audet P, Charest C (2007) Heavy metal phytoremediation from a meta-analytical perspective. Environ Pollut 147:231–237PubMedCrossRefGoogle Scholar
  3. Audet P, Charest C (2008) Allocation plasticity and plant-metal partitioning: meta-analytical perspectives in phytoremediation. Environ Pollut 156:290–296PubMedCrossRefGoogle Scholar
  4. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  5. Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants, heavy metal tolerance in plants. In: Shaw AJ (ed) Evolutionary aspects. CRC, Boca Raton, pp 155–177Google Scholar
  6. Baker AJM, McGrath SP, Reeves DR, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils and water. CRC Press LLC, Boca Raton, pp 171–188Google Scholar
  7. Bernard F, Brulle F, Douay F, Lemière S, Demuynck S, Vandenbulcke F (2010) Metallic trace element body burdens and gene expression analysis of biomarker candidates in Eisenia fetida, using an “exposure/depuration” experimental scheme with field soils. Ecotoxicol Environ Saf 73:1034–1045PubMedCrossRefGoogle Scholar
  8. Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153–176CrossRefGoogle Scholar
  9. Boyd RS (2009) High-nickel insects and nickel hyperaccumulator plants: a review. Insect Sci 16:19–31CrossRefGoogle Scholar
  10. Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57CrossRefGoogle Scholar
  11. Brulle F, Mitta G, Leroux R, Lemière S, Leprêtre A, Vandenbulcke F (2007) The strong induction of metallothionein gene following cadmium exposure transiently affects the expression of many genes in Eisenia fetida: a trade-off mechanism? Comp Biochem Physiol C Toxicol Pharmacol 144:334–341PubMedCrossRefGoogle Scholar
  12. Brulle F, Cocquerelle C, Mitta G, Castric V, Douay F, Leprêtre A, Vandenbulcke F (2008) Identification and expression profile of gene transcripts differentially expressed during metallic exposure in Eisenia fetida coelomocytes. Dev Comp Immunol 32:1441–1453PubMedCrossRefGoogle Scholar
  13. Brulle F, Morgan AJ, Cocquerelle C, Vandenbulcke F (2010) Transcriptomic underpinning of toxicant-mediated physiological function alterations in three trerrestrial invertebrate taxa: a review. Environ Pollut 158:2793–2808PubMedCrossRefGoogle Scholar
  14. Callaghan A, Denny N (2002) Evidence for an interaction between p-glycoprotein and cadmium toxicity in cadmium-resistant and -susceptible strains of Drosophila melanogaster. Ecotoxicol Environ Saf 52:211–213PubMedCrossRefGoogle Scholar
  15. Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40:6792–6798PubMedCrossRefGoogle Scholar
  16. Ciocan CM, Rotchell JM (2004) Cadmium induction of metallothionein isoforms in juvenile and adult mussel (Mytilus edulis). Environ Sci Technol 38:1073–1078PubMedCrossRefGoogle Scholar
  17. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719PubMedCrossRefGoogle Scholar
  18. Clemens S, Palmgren MG, Krämer (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315PubMedCrossRefGoogle Scholar
  19. Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: role in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182PubMedCrossRefGoogle Scholar
  20. Dehal P, Satou Y, Campbell RK et al (2002) The draft genome of Ciona intestinalis: insights into the chordate and vertebrate origins. Science 298:2157–2167PubMedCrossRefGoogle Scholar
  21. Foster PL (2005) Stress responses and genetic variation in bacteria. Mutat Res Fundam Mol Mech Mutagen 569:3–11CrossRefGoogle Scholar
  22. Freeman JL, Quinn CF, Marcus MA, Fakra S, Pilon-Smits EAH (2006) Selenium-tolerant diamondback moth disarms hyperaccumulator plant defense. Curr Biol 16:2181–2192PubMedCrossRefGoogle Scholar
  23. Grime JP (1979) Plant strategies and vegetation processes. Wiley, ChichesterGoogle Scholar
  24. Hanikenne M, Motte P, Wu MCS, Wang T, Loppes R, Matagne RF (2005) A mitochondrial half-size BC transporter is involved in cadmium tolerance in Chlamydomonas reinhardtii. Plant Cell Environ 28:863–873CrossRefGoogle Scholar
  25. Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–396PubMedCrossRefGoogle Scholar
  26. Hendrickx F, Maelfait JP, Speelmans M, Van Straalen NM (2003) Adaptive reproductive variation along a pollution gradient in a wolf spider. Oecologia 134:189–194PubMedGoogle Scholar
  27. Hensbergen PJ, Van Velzen MJM, Nugroho RA, Donker MH, Van Straalen NM (2000) Metallothionein-bound cadmium in the gut of the insect Orchesella cincta (Collembola) in relation to dietary cadmium exposure. Comp Biochem Physiol C Toxicol Pharmacol 125:17–24PubMedGoogle Scholar
  28. Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765PubMedCrossRefGoogle Scholar
  29. Hughes SL, Bundy JG, Want EJ, Kille P, Stürzenbaum SR (2009) The metabolomic responses of Caenorhabditis elegans to cadmium are largely independent of metallothionein status, but dominated by changes in cystathionine and phytochelatins. J Proteom Res 8:3512–3519CrossRefGoogle Scholar
  30. Janssens TKS, Mariën J, Cenijn P, Legler J, Van Straalen NM, Roelofs D (2007) Recombinational micro-evolution of functionally different metallothionein promoter alleles from Orchesella cincta. BMC Evol Biol 7:88PubMedCrossRefGoogle Scholar
  31. Janssens TKS, Del Rio LR, Mariën J, Timmermans MJTN, Montagne-Wagner K, Van Straalen NM, Roelofs D (2008) Comparative population analysis of metallothionein promoter alleles suggests stress-induced micro-evolution in the field. Environ Sci Technol 42:3873–3878PubMedCrossRefGoogle Scholar
  32. Janssens TKS, Roelofs D, van Straalen NM (2009) Molecular mechanisms of heavy metal tolerance and evolution in invertebrates. Insect Sci 16:3–18CrossRefGoogle Scholar
  33. Jiang RF, Ma DY, Zhao FJ, McGrath SP (2005) Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol 167:805–814PubMedCrossRefGoogle Scholar
  34. Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508PubMedGoogle Scholar
  35. Klerks PL, Bartholomew PR (1991) Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete Limnodrilus hoffmeisteri. Aquat Toxicol 19:97–112CrossRefGoogle Scholar
  36. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534PubMedCrossRefGoogle Scholar
  37. Krämer U, Talke IN, Hanikenne (2007) Transition metal transport. FEBS Lett 581:2263–2272PubMedCrossRefGoogle Scholar
  38. Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300PubMedCrossRefGoogle Scholar
  39. Lee JG, Roberts SB, Morel FMM (1995) Cadmium: a nutrient for the marine diatom Thalassiosira weissflogii. Limnol Oceanogr 40:1056–1063CrossRefGoogle Scholar
  40. Macnair MR (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105CrossRefGoogle Scholar
  41. Maestri E, Marmiroli M, Visioli G, Marmiroli N (2002) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13CrossRefGoogle Scholar
  42. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43CrossRefGoogle Scholar
  43. Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremidiation. Environ Sci Pollut Res 16:162–175CrossRefGoogle Scholar
  44. Morgan AJ, Kille P, Stürzenbaum SR (2007) Microevolution and ecotoxicology of metals in invertebrates. Environ Sci Technol 41:1085–1096PubMedCrossRefGoogle Scholar
  45. Morris C, Grossl PR, Call CA (2009) Elemental allelopathy: processes, progress, and pitfalls. Plant Ecol 202:1–11CrossRefGoogle Scholar
  46. Palmiter RD (1998) The elusive function of metallothioneins. Proc Natl Acad Sci USA 95:8428–8430PubMedCrossRefGoogle Scholar
  47. Pierce S, Vianelli A, Cerabolini B (2005) From ancient genes to modern communities: the cellular stress response and the evolution of plant strategies. Funct Ecol 19:763–776CrossRefGoogle Scholar
  48. Pollard AJ, Baker AJM (1997) Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytol 135:655–658CrossRefGoogle Scholar
  49. Poschenrieder C, Tolrà R, Barceló J (2006) Can metal defend plants against biotic stress? Trends Plant Sci 11:288–295PubMedCrossRefGoogle Scholar
  50. Posthuma L, van Straalen NM (1993) Heavy metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences. Comp Biochem Phys C 106:11–38Google Scholar
  51. Posthuma L, Hogervorst RF, van Straalen NM (1992) Adaptation to soil pollution by cadmium excretion in natural populations of Orchesella cincta (L) (Collembola). Arch Environ Contam Toxicol 22:146–156PubMedCrossRefGoogle Scholar
  52. Postma JF, van Nugteren P, Buckert de Jong MB (1996) Increased cadmium excretion in metal-adapted populations of the midge Chironomus riparius (Diptera). Environ Toxicol Chem 15:332–339Google Scholar
  53. Poynton HC, Varshavsky JR, Chang B, Holman PS, Loguinov AV, Bauer DJ, Komachi K, Theil E, Perkins EJ, Hughes O, Vulpe CD (2007) Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ Sci Technol 41:1044–1050PubMedCrossRefGoogle Scholar
  54. Roelofs D, Mariën J, van Straalen NM (2007) Differential gene expression profiles associated with heavy metal tolerance in the soil insect Orchesella cincta. Insect Biochem Mol Biol 37:287–295PubMedCrossRefGoogle Scholar
  55. Roelofs D, Morgan J, Stürzenbaum S (2010) The significance of genome-wide transcriptional regulation in the evolution of stress tolerance. Evol Ecol 24:527–539CrossRefGoogle Scholar
  56. Schlesinger WH (1997) Biogeochemistry. An analysis of global change. Academic, San DiegoGoogle Scholar
  57. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 372:1351–1365CrossRefGoogle Scholar
  58. Semane B, Cuypers A, Smeets K, Van Belleghem F, Horemans N, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528CrossRefGoogle Scholar
  59. Shaw JR, Colbourne JK, Davey JC, Glaholt SP, Hampton TH, Chen CY, Folt CL, Hamilton JW (2007) Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins. BMC Genomics 8:477PubMedCrossRefGoogle Scholar
  60. Sterenborg I, Roelofs D (2003) Field-selected cadmium tolerance in the springtail Orchesella cincta is correlated with increased metallothionein mRNA expression. Insect Biochem Mol Biol 33:741–747PubMedCrossRefGoogle Scholar
  61. Stürzenbaum SR, Winters C, Galay M, Morgan AJ, Kille P (2001) Metal ion trafficking in earthworms. J Biol Chem 276:34013–34018PubMedCrossRefGoogle Scholar
  62. Stürzenbaum SR, Georgiev O, Morgan AJ, Kille P (2004) Cadmium detoxification in earthworms: from genes to cells. Environ Sci Technol 38:6283–6289PubMedCrossRefGoogle Scholar
  63. Swain SC, Keusekotten K, Baumeister R, Stürzenbaum SR (2004) C. elegans metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J Mol Biol 341:951–959PubMedCrossRefGoogle Scholar
  64. Timmermans MJTN, Roelofs D, Nota B, Ylstra B, Holmstrup M (2009) Sugar sweet springtails: on the transcriptional response of Folsomia candida (Collembola) to desiccation stress. Insect Mol Biol 18:737–746PubMedCrossRefGoogle Scholar
  65. van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Van Themaat EVL, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147PubMedCrossRefGoogle Scholar
  66. van de Mortel JE, Schat H, Moerland PD, Van Themaat EVL, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MGM (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324PubMedCrossRefGoogle Scholar
  67. van Straalen NM, Roelofs D (2006) An introduction to ecological genomics. Oxford University Press, OxfordGoogle Scholar
  68. Vandegehuchte MB, Vandenbrouck T, de Coninck D, de Coen WM, Janssen CR (2010) Can metal stress induce transferable changes in gene transcription in Daphnia magna? Aquat Toxicol 97:188–195PubMedCrossRefGoogle Scholar
  69. Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal detoxification in animals. Phytochelatinsynthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 276:20817–20820PubMedCrossRefGoogle Scholar
  70. Verbruggen N, Hermans C, Schat H (2009a) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776PubMedCrossRefGoogle Scholar
  71. Verbruggen N, Hermans C, Schat H (2009b) Mechansims to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372PubMedCrossRefGoogle Scholar
  72. Vesk PA, Reichman SM (2009) Hyperaccumulators and herbivores – a Bayesian meta-analysis of feeding choice trials. J Chem Ecol 35:289–296PubMedCrossRefGoogle Scholar
  73. Viarengo A, Burlando B, Ceratto N, Panfoli I (2000) Antioxidant role of metallothioneins: a comparative overview. Cell Mol Biol 46:407–417PubMedGoogle Scholar
  74. Wang T, Wu M (2006) An ATP-binding cassette transporter related to yeast vacuolar ScYCF1 is important for Cd sequestration in Chlamydomonas reinhardtii. Plant Cell Environ 29:1901–1912PubMedCrossRefGoogle Scholar
  75. Weber M (2005) Identifizierung und Charakterisierung von Hyperakkumulationsfaktoren bzw. Schwermetallregulierten Genen in Arabidopsis halleri und Arabidopsis thaliana. Dissertation, University Halle, urn:nbn:de:gbv:3–000008574Google Scholar
  76. Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963PubMedCrossRefGoogle Scholar
  77. Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126PubMedCrossRefGoogle Scholar
  78. Xie LT, Klerks PL (2004) Fitness cost of resistance to cadmium in the least killifish (Heterandria formosa). Environ Toxicol Chem 23:1499–1503PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Biology Laboratory of Freshwater and Stress EcologyHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations