Advertisement

Activation of Oxygen: Multipurpose Tool

  • Christian E. W. SteinbergEmail author
Chapter

Abstract

To most biomolecules, elemental oxygen is inert since it usually does not oxidize them without prior activation either inside or outside of organisms. Atmospheric oxygen in its ground state is distinctive among the gaseous elements because it is a bi-radical. This means it possesses two unpaired electrons with parallel spins which make it paramagnetic. In this constitution, it is very unlikely to participate in reactions with organic molecules unless activated.

Keywords

Reactive Oxygen Species Humic Substance Programme Cell Death Reactive Oxygen Species Production NADPH Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahsan N, Renaut J, Komatsu S (2009) Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 9:2602–2621PubMedCrossRefGoogle Scholar
  2. Albrecht U, Bowman KD (2008) Gene expression in Citrus sinensis (L.) Osbeck following infection with the bacterial pathogen Candidatus Liberibacter asiaticus causing Huanglongbing in Florida. Plant Sci 175:291–306CrossRefGoogle Scholar
  3. Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344CrossRefGoogle Scholar
  4. Almroth BC, Sturve J, Berglund Å, Förlin L (2005) Oxidative damage in eelpout (Zoarces viviparus), measured as protein carbonyls and TBARS, as biomarkers. Aquat Toxicol 73:171–180PubMedCrossRefGoogle Scholar
  5. Amako K, Ushimaru T (2009) Dehydroascorbate reductase and salt stress. CAB Rev 4:3Google Scholar
  6. Anastasiadi M, Pratsinis H, Kletsas D, Skaltsounis AL, Haroutounian SA (2010) Bioactive non-coloured polyphenols content of grapes, wines and vinification by-products: evaluation of the antioxidant activities of their extracts. Food Res Int 43:805–813CrossRefGoogle Scholar
  7. Babai R, Ron EZ (1998) An Escherichia coli gene responsive to heavy metals. FEMS Microbiol Rev 167:107–111CrossRefGoogle Scholar
  8. Babica P, Bláha L, Maršálek B (2006) Exploring the natural role of microcystins – a review of effects on photoautotrophic organism. J Phycol 42:9–20CrossRefGoogle Scholar
  9. Bagnyukova TV, Lushchak OV, Storey KB, Lushchak VI (2007) Oxidative stress and antioxidant defense responses by goldfish tissues to acute change of temperature from 3 to 23°C. J Therm Biol 32:227–234CrossRefGoogle Scholar
  10. Bai R, Ma F, Liang D, Zhao X (2009) Phthalic acid induces oxidative stress and alters the activity of some antioxidant enzymes in roots of Malus prunifolia. J Chem Ecol 35:488–494PubMedCrossRefGoogle Scholar
  11. Baier M, Kandlbinder A, Golldack D, Dietz KJ (2005) Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ 28:1012–1020CrossRefGoogle Scholar
  12. Bártová K, Hilscherová K, Babica P, Maršálek B, Bláha L (2010) Effects of microcystin and complex cyanobacterial samples on the growth and oxidative stress parameters in green alga Pseudokirchneriella subcapitata and comparison with the model oxidative stressor-herbicide paraquat. Environ Toxicol. doi:10.1002/tox.20601Google Scholar
  13. Bazikalova AY (1945) Amphipods of lake baikal. Trudy limnol stantsii T11, 440 p (in Russian)Google Scholar
  14. Bebianno MJ, Barreira LA (2009) Polycyclic aromatic hydrocarbons concentrations and biomarker responses in the clam Ruditapes decussatus transplanted in the Ria Formosa lagoon. Ecotoxicol Environ Saf 72:1849–1860PubMedCrossRefGoogle Scholar
  15. Bedulina DS, Timofeyev MA, Zimmer M, Zwirnmann E, Menzel R, Steinberg CEW (2010a) Different natural organic matter isolates cause similar stress response patterns in the freshwater amphipod, Gammarus pulex. Environ Sci Pollut Res 17:261–269CrossRefGoogle Scholar
  16. Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89:1113–1121Google Scholar
  17. Bláha L, Kopp R, Šimková K, Mareš J (2004) Oxidative stress biomarkers are modulated in silver carp (Hypophthalmichthys molitrix Val.) exposed to microcystin-producing cyanobacterial water bloom. Acta Vet Brno 73:477–482CrossRefGoogle Scholar
  18. Blokhina O (2000) Anoxia and oxidative stress: lipid peroxidation, antioxidant status and mitochondrial functions in plants. Academic Dissertation, Faculty of Science, University of Helsinki, ISBN 951-45-9633-1Google Scholar
  19. Blokhina OB, Chirkova TV, Fagerstedt KV (2001) Anoxic stress leads to hydrogen peroxide formation in plant cells. J Exp Bot 52:1179–1190PubMedCrossRefGoogle Scholar
  20. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194PubMedCrossRefGoogle Scholar
  21. Bocchetti R, Fattorini D, Pisanelli B, Macchia S, Oliviero L, Pilato F, Pellegrini D, Regoli F (2008) Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbour areas. Aquat Toxicol 89:257–266PubMedCrossRefGoogle Scholar
  22. Brennan RJ, Schiestl RH (1996) Cadmium is an inducer of oxidative stress in yeast. Mutat Res 356:171–178PubMedCrossRefGoogle Scholar
  23. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipd peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 3000:535–543CrossRefGoogle Scholar
  24. Butow B, Wynne D, Sukenik A, Hadas O, Tel-Or E (1998) The synergistic effect of carbon concentration and high temperature on lipid peroxidation in Peridinium gatunense. J Plankton Res 20:355–369CrossRefGoogle Scholar
  25. Carmeli E, Bachar A, Barchad S (2007) Biochemical assessments of total antioxidant status in active and nonactive female adults with intellectual disability. Res Sports Med 15:93–101PubMedCrossRefGoogle Scholar
  26. Cerenius L, Lee BL, Söderhäll K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271PubMedCrossRefGoogle Scholar
  27. Chagas RM, Silveira JAG, Ribeiro RV, Vitorello VA, Carrer H (2008) Photochemical damage and comparative performance of superoxide dismutase and ascorbate peroxidase in sugarcane leaves exposed to paraquat-induced oxidative stress. Pest Biochem Physiol 90:181–188CrossRefGoogle Scholar
  28. Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci USA 102:3459–3464PubMedCrossRefGoogle Scholar
  29. Ching B, Chew SF, Wong WP, Ip YK (2009) Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper). Aquat Toxicol 95:203–212PubMedCrossRefGoogle Scholar
  30. Clarkson PM, Thompson HS (2000) Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 72:637S–646SPubMedGoogle Scholar
  31. Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681CrossRefGoogle Scholar
  32. Cosse A, Leblanc C, Potin P (2007) Dynamic defense of marine macroalgae against pathogens: from early activated to gene-regulated responses. Adv Bot Res 46:221–266CrossRefGoogle Scholar
  33. Dahms HU, Lee JS (2010) UV radiation in marine ectotherms: molecular effects and responses. Aquat Toxicol 97:3–14PubMedCrossRefGoogle Scholar
  34. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389–406PubMedCrossRefGoogle Scholar
  35. Damanik RI, Maziah M, Ismail MR, Ahmad S, Zain AM (2010) Responses of the antioxidative enzymes in Malaysian rice (Oryza sativa L.) cultivars under submergence condition. Acta Physiol Plant 32:739–747CrossRefGoogle Scholar
  36. Denekamp NY, Thorne MAS, Clark MS, Kube M, Reinhardt R, Lubzens E (2009) Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10:108PubMedCrossRefGoogle Scholar
  37. Dissanayake A, Galloway TS, Jones MB (2008) Nutritional status of Carcinus maenas (Crustacea: Decapoda) influences susceptibility to contaminant exposure. Aquat Toxicol 89:40–46PubMedCrossRefGoogle Scholar
  38. Dittmann E, Meilan BA, Erhard M, von Döhren H, Börner T (1997) Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol Microbiol 26:779–787PubMedCrossRefGoogle Scholar
  39. Dorval J, Leblond V, Deblois C, Hontela A (2005) Oxidative stress and endocrine endpoints in white sucker (Catostomus commersoni) from a river impacted by agricultural chemicals. Environ Toxicol Chem 24:1273–1280PubMedCrossRefGoogle Scholar
  40. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95PubMedGoogle Scholar
  41. Duke SO (2010) Allelopathy: current status of research and future of the discipline: a commentary. Allelop J 25:17–30Google Scholar
  42. Dunlap WC, Yamamoto Y (1995) Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine. Comp Biochem Physiol B Biochem Mol Biol 112:105–114CrossRefGoogle Scholar
  43. Elster EF (1982) Oxygen activation and oxygen toxicity. Annu Rev Plant Physiol 33:73–96CrossRefGoogle Scholar
  44. Eriksen NT, Hayes KC, Lewitus AJ (2002) Growth response of the mixotrophic dinoflagellates, Cryptoperidiniopsis sp. and Pfiesteria piscicida, to light under prey-saturated conditions. Harmful Algae 1:191–203CrossRefGoogle Scholar
  45. Esfandiari EO, Shakiba MR, Mahboob SA, Alyari H, Toorchi M (2008) Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. J Food Agric Environ 5:149–153Google Scholar
  46. Evans C, Malin G, Mills GP, Wilson WH (2006) Viral infection of Emiliania huxleyi (Prymnesiophyceae) leads to elevated production of reactive oxygen species. J Phycol 42:1040–1047CrossRefGoogle Scholar
  47. Fares S, Oksanen E, Lännenpää M, Julkunen-Tiitto R, Loreto F (2010) Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations. Photosyn Res 104:61–74PubMedCrossRefGoogle Scholar
  48. Ferianc P, Farewell A, Nystrom T (1998) The cadmium-stress stimulon of Escherichia coli K-12. Microbiology 144:1045–1050PubMedCrossRefGoogle Scholar
  49. Fernández B, Albentosa M, Viñas L, Franco A, González JJ, Campillo JA (2010) Integrated assessment of water quality of the Costa da Morte (Galicia, NW Spain) by means of mussel chemical, biochemical and physiological parameters. Ecotoxicology 19:735–750PubMedCrossRefGoogle Scholar
  50. Ferreira S, Hjernø K, Larsen M, Wingsle G, Larsen P, Fey S, Roepstorff P, Pais MS (2006) Proteome profiling of Populus euphratica Oliv. upon heat stress. Ann Bot 98:361–377PubMedCrossRefGoogle Scholar
  51. Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI (2009) Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois. Mutat Res 674:3–22PubMedCrossRefGoogle Scholar
  52. Gehringer MM, Shephard EG, Downing TG, Wiegand C, Neilan BA (2004) An investigation into the detoxification of microcystin-LR by the glutathione pathway in Balb/c mice. Int J Biochem Cell Biol 36:931–941PubMedCrossRefGoogle Scholar
  53. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefGoogle Scholar
  54. Glaeser SP, Grossart HP, Glaeser J (2010) Singlet oxygen, a neglected but important environmental factor: short-term and long-term effects on bacterioplankton composition in a humic lake. Environ Microbiol 12:3124–3196PubMedCrossRefGoogle Scholar
  55. Glyan’ko AK, Vasil’eva GG (2010) Reactive oxygen and nitrogen species in legume-rhizobial symbiosis: a review. Appl Biochem Microbiol 46:15–22CrossRefGoogle Scholar
  56. Goulden CE, Comotto RM, Hendrickson JA Jr, Hornig LL, Johnson KJ (1982) Procedures and recommendation for the culture and use of Daphnia in bioassay studies. In: Pearson JG, Foster RB, Bishop WE (eds) Aquatic toxicology and hazard assessment: 5th Conf Am Soc Testing Materials, Philadelphia, 139–160Google Scholar
  57. Green TJ, Dixon TJ, Devic E, Adlard RD, Barnes AC (2009) Differential expression of genes encoding anti-oxidant enzymes in Sydney rock oysters, Saccostrea glomerata (Gould) selected for disease resistance. Fish Shellfish Immunol 26:799–810PubMedCrossRefGoogle Scholar
  58. Guo N, Xie P (2010) A study on the effects of food quantity and quality on glutathione S-transferase (GST) activity and growth rate parameters of Daphnia carinata varying in age. Aquat Ecol. doi:10.1007/s10452-010-9324-xGoogle Scholar
  59. Gür A, Demirel U, Özden M, Kahraman A, Çopur O (2010) Diurnal gradual heat stress affects antioxidant enzymes, proline accumulation and some physiological components in cotton (Gossypium hirsutum L.). Afr J Biotechnol 9:1008–1015Google Scholar
  60. Hannam ML, Bamber SD, Galloway TS, John Moody A, Jones MB (2010) Effects of the model PAH phenanthrene on immune function and oxidative stress in the haemolymph of the temperate scallop Pecten maximus. Chemosphere 78:779–784PubMedCrossRefGoogle Scholar
  61. Hashemi A, Abdolzadeh A, Sadeghipour HR (2010) Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L, plants. Soil Sci Plant Nutr 56:244–253CrossRefGoogle Scholar
  62. Hashiguchi A, Sakata K, Komatsu S (2009) Proteome analysis of early-stage soybean seedlings under flooding stress. J Proteome Res 8:2058–2069PubMedCrossRefGoogle Scholar
  63. Hlaváček O, Kučerová H, Harant K, Palková Z, Váchová L (2009) Putative role for ABC multidrug exporters in yeast quorum sensing. FEBS Lett 583:1107–1113PubMedCrossRefGoogle Scholar
  64. Hong Y, Hua HY, Xie X, Sakoda A, Sagehashi M, Li FM (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat Toxicol 91:262–269PubMedCrossRefGoogle Scholar
  65. Hu ZQ, Liu YD, Li DH, Dauta A (2005) Growth and antioxidant system of the cyanobacterium Synechococcus elongates in response to microcystin-RR. Hydrobiologia 534:23–29CrossRefGoogle Scholar
  66. Huovinen P, Leal P, Gmez I (2010) Interacting effects of copper, nitrogen and ultraviolet radiation on the physiology of three south Pacific kelps. Mar Freshwat Res 61:330–341CrossRefGoogle Scholar
  67. Ibarz A, Martín-Pérez M, Blasco J, Bellido D, de Oliveira E, Fernández-Borràs J (2010) Gilthead sea bream liver proteome altered at low temperature by oxidative stress. Proteomics 10:963–975PubMedGoogle Scholar
  68. Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418PubMedCrossRefGoogle Scholar
  69. Iqbal S, Bano A (2010) Water stress induced changes in antioxidant enzymes, membrane stability and seed protein profile of different wheat accessions. Afr J Biotech 8:6576–6587Google Scholar
  70. Jackson MB, Colmer TD (2005) Response and adaptation by plants to flooding stress. Ann Bot 96:501–505PubMedCrossRefGoogle Scholar
  71. Jakobsen HH, Hansen PJ, Larsen J (2000) Growth and grazing response of two chloroplast-retaining dinoflagellates: effect of irradiance and prey species. Mar Ecol Prog Ser 201:121–128CrossRefGoogle Scholar
  72. Janknegt PJ, De Graaff CM, Van De Poll WH, Visser RJW, Helbling EW, Buma AGJ (2009) Antioxidative responses of two marine microalgae during acclimation to static and fluctuating natural uv radiation. Photochem Photobiol 85:1336–1345PubMedCrossRefGoogle Scholar
  73. Jarmuszkiewicz W, Woyda-Ploszczyca A, Antos-Krzeminska N, Sluse FE (2010) Mitochondrial uncoupling proteins in unicellular eukaryotes. Biochim Biophys Acta 1797:792–799PubMedCrossRefGoogle Scholar
  74. Jebara S, Jebara M, Limam F, Aouani ME (2005) Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J Plant Physiol 162:929–936PubMedCrossRefGoogle Scholar
  75. Jensen TC, Hessen DO (2007) Does excess dietary carbon affect respiration of Daphnia? Oecologia 152:191–200PubMedCrossRefGoogle Scholar
  76. Jonsson PR, Pavia H, Toth G (2009) Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proc Natl Acad Sci USA 106:11177–11182PubMedCrossRefGoogle Scholar
  77. Kamara S, Pflugmacher S (2007) Phragmites australis and Quercus robur leaf extracts affect antioxidative system and photosynthesis of Ceratophyllum demersum. Ecotoxicol Environ Saf 67:240–246PubMedCrossRefGoogle Scholar
  78. Karsten U, Wulff A, Roleda MY, Müller R, Steinhoff FS, Fredersdorf J, Wiencke C (2009) Physiological response of polar benthic algae to ultraviolet radiation. Bot Mar 52:639–654CrossRefGoogle Scholar
  79. Khan FR, Irvin JR, Bury NR, Hogstrand C (2011) Differential tolerance of two Gammarus pulex populations transplanted from different metallogenic regions to a polymetal gradient. Aquat Toxicol 102:95–103PubMedCrossRefGoogle Scholar
  80. Kotchoni SO, Gachomo EW (2006) The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J Biosci 31:389–404PubMedCrossRefGoogle Scholar
  81. Kranner I, Beckett RP, Wornik S, Zorn M, Pfeifhofer HW (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J 31:13–24PubMedCrossRefGoogle Scholar
  82. Krishnan N, Dickman MB, Becker DF (2008) Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med 44:671–681PubMedCrossRefGoogle Scholar
  83. Lascano HR, Melchiorre MN, Luna CM, Trippi VS (2003) Effect of photooxidative stress induced by paraquat in two wheat cultivars with differential tolerance to water stress. Plant Sci 164:1019–1028CrossRefGoogle Scholar
  84. Lee SW, Choi J (2009) Multi-level ecotoxicity assay on the aquatic midge, Chironomus tentans (Diptera, Chironomidae) exposed to octachlorostyrene. Environ Toxicol Pharmacol 28:269–274PubMedCrossRefGoogle Scholar
  85. Lesser MP (1996) vated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41:271–283CrossRefGoogle Scholar
  86. Lewis WM Jr (1986) Evolutionary interpretations of allelochemical interactions in phytoplankton algae. Am Nat 127:184–194CrossRefGoogle Scholar
  87. Li L, Xie P, Chen J (2007a) Biochemical and ultrastructural changes of the liver and kidney of the phytoplanktivorous silver carp feeding naturally on toxic Microcystis blooms in Taihu Lake, China. Toxicon 49:1042–1053PubMedCrossRefGoogle Scholar
  88. Li X, Schuler MA, Berenbaum MR (2007b) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253PubMedCrossRefGoogle Scholar
  89. Locato V, Gadaleta C, De Gara L, de Pinto MC (2008) Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate. Plant Cell Environ 31:1606–1619PubMedCrossRefGoogle Scholar
  90. Lu C, Brauer MJ, Botstein D (2009) Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Mol Biol Cell 20:891–903PubMedCrossRefGoogle Scholar
  91. Luhová L, Lebeda A, Kutrová E, Hedererová D, Peč P (2006) Peroxidase, catalase, amine oxidase and acid phosphatase activities in Pisum sativum during infection with Fusarium oxysporum and F. solani. Biol Plant 50:675–682CrossRefGoogle Scholar
  92. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30PubMedCrossRefGoogle Scholar
  93. Lushchak VI, Bagnyukova TV (2006) Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes. Comp Biochem Physiol C Toxicol Pharmacol 143:36–41PubMedCrossRefGoogle Scholar
  94. Lushchak VI, Bagnyukova TV (2007) Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii. Comp Biochem Physiol B Biochem Mol Biol 148:390–397PubMedCrossRefGoogle Scholar
  95. Lushchak VI, Bagnyukova TV, Husak VV, Luzhna LI, Lushchak OV, Storey KB (2005) Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int J Biochem Cell Biol 37:1670–1680PubMedCrossRefGoogle Scholar
  96. Lushchak OV, Kubrak OI, Lozinsky OV, Storey JM, Storey KB, Lushchak VI (2009) Chromium(III) induces oxidative stress in goldfish liver and kidney. Aquat Toxicol 93:45–52PubMedCrossRefGoogle Scholar
  97. Mahan JR, Mauget SA (2005) Antioxidant metabolism in cotton seedlings exposed to temperature stress in the field. Crop Sci 45:2337–2345CrossRefGoogle Scholar
  98. Mahan JR, Gitz DC III, Payton PR, Allen R (2009) Overexpression of glutathione reductase in cotton does not alter emergence rates under temperature stress. Crop Sci 49:272–280CrossRefGoogle Scholar
  99. Małecka A, Derba-Maceluch M, Kaczorowska K, Piechalak A, Tomaszewska B (2009) Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: mitochondrial and peroxisomal level. Acta Physiol Plant 31:1065–1075CrossRefGoogle Scholar
  100. Malik AI, Storey KB (2009) Activation of antioxidant defense during dehydration stress in the African clawed frog. Gene 442:99–107PubMedCrossRefGoogle Scholar
  101. McDonald AE, Vanlerberghe GC (2004) Branched mitochondrial electron transport in the Animalia: presence of alternative oxidase in several animal phyla. IUBMB Life 56:333–341PubMedCrossRefGoogle Scholar
  102. McDonald AE, Amirsadeghi S, Vanlerberghe GC (2003) Prokaryotic orthologues of mitochondrial alternative oxidase and plastid terminal oxidase. Plant Mol Biol 53:865–876PubMedCrossRefGoogle Scholar
  103. Menzel R, Stürzenbaum S, Bärenwaldt A, Kulas J, Steinberg CEW (2005b) Humic material induces behavioral and global transcriptional responses in the nematode Caenorhabditis elegans. Environ Sci Technol 39:8324–8332PubMedCrossRefGoogle Scholar
  104. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  105. Mittler R, Herr EH, Orvar BL, Van Camp W, Willekens H, Inzé D, Ellis BE (1999) Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyper-responsive to pathogen infection. Proc Natl Acad Sci USA 96:14165–14170PubMedCrossRefGoogle Scholar
  106. Møgelhøj MK, Hansen PJ, Henriksen P, Lundholm N (2006) High pH and not allelopathy may be responsible for negative effects of Nodularia spumigena on other algae. Aquat Microb Ecol 43:43–54CrossRefGoogle Scholar
  107. Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganism early interactions. J Integr Plant Biol 52:195–204PubMedCrossRefGoogle Scholar
  108. Nedelcu AM, Marcu O, Michod RE (2004) Sex as a response to oxidative stress: a twofold increase in cellular reactive oxygen species activates sex genes. Proc R Soc Lond B 270:S136–S139CrossRefGoogle Scholar
  109. Nesto N, Cassin D, Da Ros L (2010) Is the polychaete, Perinereis rullieri (Pilato 1974), a reliable indicator of PCB and PAH contaminants in coastal sediments? Ecotoxicol Environ Saf 73:143–151PubMedCrossRefGoogle Scholar
  110. Newton K, Peters R, Raftos D (2004) Phenoloxidase and QX disease resistance in Sydney rock oysters (Saccostrea glomerata). Dev Comp Immunol 28:565–569PubMedCrossRefGoogle Scholar
  111. Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425PubMedCrossRefGoogle Scholar
  112. Novo E, Parola M (2008) Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogen Tiss Repair 1:5CrossRefGoogle Scholar
  113. Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062PubMedCrossRefGoogle Scholar
  114. Oracz K, Bailly C, Gniazdowska A, Côme D, Corbineau F, Bogatek R (2007) Induction of oxidative stress by sunflower phytotoxins in germinating mustard seeds. J Chem Ecol 33:251–264PubMedCrossRefGoogle Scholar
  115. Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10PubMedCrossRefGoogle Scholar
  116. Ou DY, Song LR, Gan NQ, Chen W (2005) Effects of microcystins on and toxin degradation by Poterioochromonas sp. Environ Toxicol 20:373–380PubMedCrossRefGoogle Scholar
  117. Pauly N, Pucciariello C, Mandon K, Innocenti G, Jamet A, Baudouin E, Hérouart D, Frendo P, Puppo A (2006) Reactive oxygen and nitrogen species and glutathione: key players in the legume-Rhizobium symbiosis. J Exp Bot 57:1769–1776PubMedCrossRefGoogle Scholar
  118. Persson KJ, Legrand C, Olsson T (2009) Detection of nodularin in European flounder (Platichthys flesus) in the west coast of Sweden: evidence of nodularin mediated oxidative stress. Harmful Algae 8:832–838CrossRefGoogle Scholar
  119. Pflugmacher S (2004) Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquat Toxicol 70:169–178PubMedCrossRefGoogle Scholar
  120. Pflugmacher S, Olin M, Kankaanpää H (2007) Nodularin induces oxidative stress in the Baltic Sea brown alga Fucus vesiculosus (Phaeophyceae). Mar Environ Res 64:149–159PubMedCrossRefGoogle Scholar
  121. Piotrowska A, Bajguz A, Godlewska-Zyłkiewicz B, Czerpak R, Kamińska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66:507–513CrossRefGoogle Scholar
  122. Polidoros AN, Mylona PV, Scandalios JG (2001) Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant–pathogen interactions and resistance to oxidative stress. Transgen Res 10:555–569CrossRefGoogle Scholar
  123. Politycka B, Bednarski W (2004) Oxidative burst and lipoxygenase activity induced by hydroxycinnamic acids in cucumber roots. Allelop J 14:187–196Google Scholar
  124. Radić S, Cvjetko P, Glavaš K, Roje V, Pevalek-Kozlina B, Pavlica M (2009) Oxidative stress and DNA damage in broad bean (Vicia faba L.) seedlings induced by thallium. Environ Toxicol Chem 28:189–196PubMedCrossRefGoogle Scholar
  125. Ramos-Gómez J, Martín-Díaz ML, Rodríguez A, Riba I, DelValls TÁ (2008) In situ evaluation of sediment toxicity in guadalete estuary (SW Spain) after exposure of caged Arenicola marina. Environ Toxicol 23:643–651PubMedCrossRefGoogle Scholar
  126. Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202CrossRefGoogle Scholar
  127. Rijstenbil JW, Gerringa LJA (2002) Interactions of algal ligands, metal complexation and availability, and cell responses of the diatom Ditylum brightwellii with a gradual increase in copper. Aquat Toxicol 56:115–131PubMedCrossRefGoogle Scholar
  128. Ríos JJ, Blasco B, Cervilla LM, Rosales MA, Sanchez-Rodriguez E, Romero L, Ruiz JM (2009) Production and detoxification of H2O2 in lettuce plants exposed to selenium. Ann Appl Biol 154:107–116CrossRefGoogle Scholar
  129. Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940PubMedCrossRefGoogle Scholar
  130. Ross C, Küpper FC, Vreeland V, Waite JH, Jacobs RS (2005a) Evidence of a latent oxidative burst in relation to wound repair in the giant unicellular chlorophyte Dasycladus vermicularis. J Phycol 41:531–541CrossRefGoogle Scholar
  131. Ross C, Vreeland V, Waite JH, Jacobs RS (2005b) Rapid assembly of a wound plug; stage one of a two stage wound repair mechanism in the giant unicellular chlorophyte Dasycladus vermicularis. J Phycol 41:46–54CrossRefGoogle Scholar
  132. Sairam RK, Kumutha D, Ezhilmathi K (2009) Waterlogging tolerance: nonsymbiotic haemoglobin-nitric oxide homeostasis and antioxidants. Curr Sci 96:674–682Google Scholar
  133. Saul N, Pietsch K, Menzel R, Stürzenbaum S, Steinberg CEW (2009) Catechin induced longevity in C. elegans: from key regulator genes to disposable soma. Mech Ageing Dev 130:477–486PubMedCrossRefGoogle Scholar
  134. Scheffer M (2004) Ecology of shallow lakes. Kluwer, DordrechtGoogle Scholar
  135. Schnepf E, Elbrächter M (1999) Dinophyte chloroplasts and phylogeny – a review. Grana 38:81–97Google Scholar
  136. Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. Wiley, New York, 681 ppGoogle Scholar
  137. Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32CrossRefGoogle Scholar
  138. Sharma YK, Davis KR (1994) Ozone-induced expression of stress-related genes in Arabidopsis thaliana. Plant Physiol 105:1089–1096PubMedGoogle Scholar
  139. Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726PubMedCrossRefGoogle Scholar
  140. Sharma YK, León J, Raskin I, Davis KR (1996) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci USA 93:5099–5104PubMedCrossRefGoogle Scholar
  141. Sies H (1991) Oxidative stress: introduction. In: Sies H (ed) Oxidative stress: oxidants and antioxidants. Academic, San Diego, pp 21–48Google Scholar
  142. Skovgaard A (1998) Role of chloroplast retention in marine dinoflagellates. Aquat Microb Ecol 15:293–301CrossRefGoogle Scholar
  143. Skutnik M, Rychter AM (2009) Differential response of antioxidant systems in leaves and roots of barley subjected to anoxia and post-anoxia. J Plant Physiol 166:926–937PubMedCrossRefGoogle Scholar
  144. Slos S, Stoks R (2008) Predation risk induces stress proteins and reduces antioxidant defense. Funct Ecol 22:637–642CrossRefGoogle Scholar
  145. Sluse FE, Jarmuszkiewicz W (1998) Alternative oxidase in the branched mitochondrial respiratory network: an overview on structure, function, regulation, and role. Braz J Med Biol Res 31:733–747PubMedCrossRefGoogle Scholar
  146. Smitha RB, Bennans T, Mohankumar C, Benjamin S (2009) Oxidative stress enzymes in Ficus religiosa L.: biochemical, histochemical and anatomical evidences. J Photochem Photobiol B 95(1):17–25PubMedCrossRefGoogle Scholar
  147. Steinberg CEW, Paul A (2008) Photolysis. In: Jørgensen SE, Fath BD (eds) Ecological processes, Volume 4 of Encyclopedia of ecology. Oxford, Elsevier, pp 2724–2732Google Scholar
  148. Steinberg CEW, Stürzenbaum SR, Menzel R (2008a) Genes and environment – striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci Total Environ 400:142–161PubMedCrossRefGoogle Scholar
  149. Steinberg CEW, Meinelt T, Timofeyev MA, Bittner M, Menzel R (2008b) Humic substances (review series). Part 2: interactions with organisms. Environ Sci Pollut Res Int 15:128–135PubMedCrossRefGoogle Scholar
  150. Steinberg CEW, Ouerghemmi N, Herrmann S, Bouchnak R, Timofeyev MA, Menzel R (2010a) Stress by poor food quality and exposure to humic substances: Daphnia magna responds with oxidative stress, lifespan extension, but reduced offspring numbers. Hydrobiologia 652:223–236CrossRefGoogle Scholar
  151. Streb P, Aubert S, Gout E, Feierabend J, Bligny R (2008) Cross tolerance to heavy-metal and cold-induce photoinhibition in leaves of Pisum sativum acclimated to low temperature. Physiol Mol Biol Plants 14:185–193CrossRefGoogle Scholar
  152. Strom SL (2001) Light-aided digestion, grazing and growth in herbivorous protists. Aquat Microb Ecol 23:253–261CrossRefGoogle Scholar
  153. Strom S (2002) Novel interactions between phytoplankton and microzooplankton: their influence on the coupling between growth and grazing rates in the sea. Hydrobiologia 480:41–54CrossRefGoogle Scholar
  154. Suikkanen S, Enström-Öst J, Jokela J, Sivonen K, Vitasalo M (2006) Allelopathy of Baltic Sea cyanobacteria: no evidence for the role of nodularin. J Plankton Res 28:543–550CrossRefGoogle Scholar
  155. Szivák I, Behra R, Sigg L (2009) Metal-induced reactive oxygen species production in Chlamydomonas reinhardtii (Chlorophyceae). J Phycol 45:427–435CrossRefGoogle Scholar
  156. Tamás L, Huttová J, Mistrík I, Šimonovičová M, Široká B (2006) Aluminium-induced drought and oxidative stress in barley roots. J Plant Physiol 163:781–784PubMedCrossRefGoogle Scholar
  157. Tamás L, Dudíková J, Ďurčeková K, Halušková L, Huttová J, Mistrík I, Ollé M (2008) Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J Plant Physiol 165:1193–1203PubMedCrossRefGoogle Scholar
  158. Tannin-Spitz T, Bergman M, van-Moppes D, Grossman S, Arad S (2005) Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. J Appl Phycol 17:215–222CrossRefGoogle Scholar
  159. Tartarotti B, Baffico G, Temporetti P, Zagarese HE (2004) Mycosporine-like amino acids in planktonic organisms living under different UV exposure conditions in Patagonian lakes. J Plankton Res 26:753–762PubMedCrossRefGoogle Scholar
  160. Timofeyev MA, Steinberg CEW (2006) Antioxidant response to natural organic matter (NOM) exposure in three Baikalean amphipod species from contrasting habitats. Comp Biochem Physiol B Biochem Mol Biol 145:197–203PubMedCrossRefGoogle Scholar
  161. Timofeyev MA, Shatilina ZM, Kolesnichenko AV, Kolesnichenko VV, Pflugmacher S, Steinberg CEW (2006a) Natural organic matter (NOM) induces oxidative stress in freshwater amphipods Gammarus lacustris Sars and Gammarus tigrinus Sexton. Sci Total Environ 366:673–681PubMedCrossRefGoogle Scholar
  162. Timofeyev MA, Shatilina ZM, Kolesnichenko AV, Kolesnichenko VV, Steinberg CEW (2006b) Specific antioxidant reactions to oxidative stress promoted by natural organic matter (NOM) in two amphipod species from Lake Baikal. Environ Toxicol 21:104–110PubMedCrossRefGoogle Scholar
  163. Tkalec M, Malarić IK, Pevalek-Kozlina B (2007) Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L. Sci Total Environ 388:78–89PubMedCrossRefGoogle Scholar
  164. Tománková K, Luhová L, Petřivalský M, Peč P, Lebeda A (2006) Biochemical aspects of reactive oxygen species formation in the interaction between Lycopersicon spp. and Oidium neolycopersici. Physiol Mol Plant Pathol 68:22–32CrossRefGoogle Scholar
  165. Van Bogelen RA, Kelley PM, Neidhardt FC (1987) Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J Bacteriol 169:26–32Google Scholar
  166. Vardi A, Berman-Frank I, Rozenberg T, Hadas O, Kaplan A, Levine A (1999) Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr Biol 9:1061–1064PubMedCrossRefGoogle Scholar
  167. Vardi A, Schatz D, Beeri K, Motro U, Sukenik A, Levine A, Kaplan A (2002) Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr Biol 12:1767–1772PubMedCrossRefGoogle Scholar
  168. Vasylkiv OY, Kubrak OI, Storey KB, Lushchak VI (2010) Cytotoxicity of chromium ions may be connected with induction of oxidative stress. Chemosphere 80:1044–1049PubMedCrossRefGoogle Scholar
  169. Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peeters AJM (2006) How plants cope with complete submergence. New Phytol 170:213–226PubMedCrossRefGoogle Scholar
  170. Vogel JT, Zarka DG, van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211PubMedCrossRefGoogle Scholar
  171. Wang CQ, Song H (2009) Calcium protects Trifolium repens L. seedlings against cadmium stress. Plant Cell Rep 28:1341–1349PubMedCrossRefGoogle Scholar
  172. Wang J, Wei Y, Wang D, Chan LL, Dai J (2008) Proteomic study of the effects of complex environmental stresses in the livers of goldfish (Carassius auratus) that inhabit Gaobeidian Lake in Beijing, China. Ecotoxicology 17:213–220PubMedCrossRefGoogle Scholar
  173. Weinberger F, Freidlander M (2000) Response of Gracilaria conferta (Rhodophyta) to oligoagars results in defense against agar-degrading epiphytes. J Phycol 36:1079–1086CrossRefGoogle Scholar
  174. Yang CY, Liu YD, Li DH (2007) Effects of microcystin-RR on the antioxidant system of Bacillus subtilis. Fres Environ Bull 16:1435–1441Google Scholar
  175. Zhang M, Cao T, Ni L, Xie P, Li Z (2010a) Carbon, nitrogen and antioxidant enzyme responses of Potamogeton crispus to both low light and high nutrient stresses. Environ Exp Bot 68:44–50CrossRefGoogle Scholar
  176. Zhang Q, Blaylock LA, Harrison MJ (2010b) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–1497PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Biology Laboratory of Freshwater and Stress EcologyHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations