Advertisement

A Comparative Perspective on Teacher Collaboration: The Cases of Lesson Study in Japan and of Multidisciplinary Teaching in Denmark

  • Carl WinsløwEmail author
Chapter
Part of the Mathematics Teacher Education book series (MTEN, volume 7)

Abstract

In this chapter, we present and compare two quite different organisations of teachers’ collaborative work: that of lesson study as a means for professional development of mathematics teachers in Japan, and that of Danish high school teachers’ collaboration in the setting of multidisciplinary modules. Each of these turns out to be crucially affected by certain school level paradidactic infrastructures, defined conditions and constraints of teachers’ collaborative work in preparing, observing and evaluating actual teaching. The systematic and comparative study of paradidactic infrastructures is proposed as a way to interpret and ultimately overcome difficulties which arise, for instance in attempts to realise major educational reforms.

Keywords

Mathematics teaching Teacher collaboration Paradidactic infrastructure Paradidactic system Didactic observation system Lesson study Study inside school Transdisciplinarity Multidisciplinarity Curriculum reform 

References

  1. Brousseau, G. (1986). Fondations et méthodes de la didactique des mathématiques. Recherches en didactique des mathématiques, 7(2), 33–115.Google Scholar
  2. Chevallard, Y. (1991). La transposition didactique: du savoir savant au savoir enseigné (2ème édition). Grenoble: La pensée sauvage.Google Scholar
  3. Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en didactique des mathématiques, 19(2), 221–266.Google Scholar
  4. Chevallard, Y., & Cirade, G. (2010). Les ressources manquantes comme problème professionnel – (Missing resources as a professional problem). In G. Gueudet & L. Trouche (Eds.), Ressources vives: Le travail documentaire des professeurs en mathématiques (pp. 111–128). Rennes: Presses Universitaires de Rennes et INRP.Google Scholar
  5. Clarke, D. (2004). Patterns of participation in the mathematics classroom. In M. J. Høines & A. B. Fuglestad (Eds.), Proceedings of the 28th conference of the international group for the psychology of mathematics education (vol. 2, pp. 231–238). Bergen: Bergen University College.Google Scholar
  6. Dahl, E. (2004). Den politisk ukorrekte privatpraktiserende. Letter to the editor, Gymnasieskolen 4–04.Google Scholar
  7. EVA (Danish Evaluation Institute). (2006). Almen studieforberedelse og studieområdet. Copenhagen: Danmarks Evalueringsinstitut.Google Scholar
  8. EVA (Danish Evaluation Institute). (2009). Gymnasiereformen på HHX, HTX og STX. Copenhagen: Danmarks Evalueringsinstitut.Google Scholar
  9. Fernandez, C. (2002). Learning from Japanese approaches to professional development. The case of lesson study. Journal of Teacher Education, 53(5), 393–405.CrossRefGoogle Scholar
  10. Fernandez, C., & Yoshida, M. (2004). Lesson study: A Japanese approach to improving mathematics learning and teaching. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  11. Hansen, B. (2009). Didaktik på tværs af matematik og historie. Master Thesis, University of Copenhague, May 2009. Retrieved from http://www.ind.ku.dk/publikationer/studenterserien/studenterserie10/
  12. Howe, E. (2005). Japan’s teacher acculturation: Critical analysis through comparative ethnographic narrative. Journal of Education for Teaching, 31(2), 121–131.CrossRefGoogle Scholar
  13. Isoda, M., Stephens, M., Ohara, Y., & Miyakawa, T. (2007). Japanese lesson study in mathematics. Its impact, diversity and potential for educational improvement. Singapore: World Scientific.CrossRefGoogle Scholar
  14. Lewis, C., & Tsuchida, I. (1997). Planned educational change in Japan: The case of elementary science instruction. Journal of Educational Policy, 12(5), 313–331.CrossRefGoogle Scholar
  15. Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah: Lawrence Erlbaum.Google Scholar
  16. Miyakawa, T., & Winsløw, C. (2009). Didactical designs for students’ proportional reasoning: An “open approach” lesson and a “fundamental situation”. Educational Studies in Mathematics, 72(2), 199–218.CrossRefGoogle Scholar
  17. Nohda, N. (1991). Paradigm of the “open-approach” method in mathematics teaching: Focus on mathematical problem solving. Zentralblatt für Didaktik der Mathematik (now: ZDM – International Journal on Mathematics Education), 23(2), 32–37.Google Scholar
  18. Padilla, M., & Riley, J. (2003). Guiding the new teacher: Induction of first-year teachers in Japan. In E. Britton, L. Paine, D. Pimm, & S. Raizen (Eds.), Comprehensive teacher induction: Systems for early career learning (pp. 261–295). Dordrecht: Kluwer.CrossRefGoogle Scholar
  19. Shimizu, Y. (1999). Aspects of mathematics teacher education in Japan: Focusing on teachers’ roles. Journal of Mathematics Teacher Education, 2, 107–116.CrossRefGoogle Scholar
  20. Stigler, J., & Hiebert, J. (1999). The teaching gap. Best ideas from the world’s teachers for improving education in the classroom. New York: The Free Press.Google Scholar
  21. Tsubota, K. (1977). Opunendo no mondai wo toushite suugakutekina kangaekata wo nobasu [On developing mathematical way of thinking through open end approach problems]. Journal of Japan Society of Mathematical Education, 59(2), 2–5.Google Scholar
  22. Winsløw, C. (2004). Quadratics in Japanese. Nordic Studies in Mathematics Education, 9(1), 51–74.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Science EducationUniversity of CopenhagenKøbenhavn KDenmark

Personalised recommendations