Extremely Wideband CMOS Circuits For Future THz Applications

  • Lorenzo Tripodi
  • Marion K. Matters-Kammerer
  • Dave van Goor
  • Xin Hu
  • Anders Rydberg
Chapter

Abstract

Recent results in IC design have demonstrated the possibility to realize CMOS circuits working in the 100 GHz-1 THz band. In this chapter the design and measurements of a CMOS nonlinear transmission line and a CMOS Schottky diode sampling bridge are presented. Large-signal measurements of the nonlinear transmission lines from 6 to 168 GHz are shown. Time-domain measurements showing the possibility to sample ultrafast signals with fall time of 4.6 ps are described too. These two extremely wide band devices will be used as essential building blocks for the future implementation of a CMOS-based coherent THz spectrometer and imager.

Keywords

Transmission Line CMOS Technology Schottky Diode Stray Capacitance Harmonic Mixer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors thank Dr. S. Cheng for help in assembling the measurement setup. This work is funded by the European Community’s Seventh Framework Programme under grant agreement no. FP7-224189 (ULTRA project, www.ultra-project.eu)

References

  1. 1.
    P.H. Siegel, Terahertz technology. IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002)CrossRefGoogle Scholar
  2. 2.
    B.B. Hu, M.C. Nuss, Imaging with terahertz waves. Opt. Lett. 20(16), 1716–1718 (1995)CrossRefGoogle Scholar
  3. 3.
    P.H. Siegel, Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52, 2438–2447 (2004)CrossRefGoogle Scholar
  4. 4.
    See for instance the following web sites: teraview.com, picometrix.com, zomega-terahertz.comGoogle Scholar
  5. 5.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser: a new optical source in the mid-infrared. Science 264(5158), 553–556 (1994)CrossRefGoogle Scholar
  6. 6.
    R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, F. Rossi, Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002)CrossRefGoogle Scholar
  7. 7.
    M. Dyakonov, M. Shur, Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71(15), 2465–2468 (1993)CrossRefGoogle Scholar
  8. 8.
    N. Dyakonova, Room-temperature terahertz emission from nanometer field-effect transistors. Appl. Phys. Lett. 88(14), 141906–1–141906–3 (2006)CrossRefGoogle Scholar
  9. 9.
    W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, M.S. Shur, Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Appl. Phys. Lett. 85(4), 675–677 (2004)CrossRefGoogle Scholar
  10. 10.
    J.S. Bostak, All-electronic terahertz spectroscopy system with terahertz free-space pulses. J. Opt. Soc. Am. B 11(12), 2561–2565 (1994)CrossRefGoogle Scholar
  11. 11.
    Y. Konishi, Picosecond electrical spectroscopy using monolithic GaAs circuits. Appl. Phys. Lett. 61(23), 2829–2831 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Huang, T.R. LaRocca, L. Samoska, A. Fung, M.-C.F. Chang, 324 GHz CMOS frequency generator using linear superposition technique, in IEEE International Solid-State Circuits Conference (ISSCC) Digital Technical Papers, Feb 2008, pp. 476–629Google Scholar
  13. 13.
    E. Seok et al., A 410 GHz CMOS push-push oscillator with an on-chip patch antenna, in IEEE International Solid-State Circuits Conference (ISSCC) Digital Technical Papers, Feb. 2008, pp. 472–629Google Scholar
  14. 14.
    U. Pfeiffer, E. Ojefors, A 600-GHz CMOS focal-plane array for terahertz imaging applications. 34th European Solid-State Circuits Conference (ESSCIRC), 2008Google Scholar
  15. 15.
    M.K. Matters-Kammerer, L. Tripodi, R. van Langenvelde, J. Cumana, R.H. Jansen, RF characterization of Schottky diodes in 65-nm CMOS. IEEE Trans. Electron Devices 57(5), 1063–1068 (2010)CrossRefGoogle Scholar
  16. 16.
    S. Sankaran, K.O. Kenneth, Schottky barrier diodes for millimeter wave detection in a foundry CMOS process. IEEE Electron Device Lett. 26(7), 492–494 (2005)CrossRefGoogle Scholar
  17. 17.
    R. Landauer, Parametric amplification along nonlinear transmission lines. J. Appl. Phys. 31(3), 479–484 (1960)CrossRefGoogle Scholar
  18. 18.
    C.J. Madden, M.J.W. Rodwell, R.A. Marsland, D.M. Bloom, Y.C. Pao, Generation of 3.5-ps fall-time shock waves on a monolithic GaAs nonlinear transmission line. IEEE Electron Device Lett. 9(6), 303 (1988)CrossRefGoogle Scholar
  19. 19.
    D.W. van der Weide, Delta-doped Schottky diode nonlinear transmission lines for 480-fs, 3.5 V transients. Appl. Phys. Lett. 65(7), 881–883 (1994)CrossRefGoogle Scholar
  20. 20.
    E. Afshari, A. Hajimiri, Nonlinear transmission lines for pulse shaping in silicon. IEEE J. Solid-State Circ. 40(3), 744–752 (2005)CrossRefGoogle Scholar
  21. 21.
    M.J.W. Rodwell, GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling. IEEE Trans. Microw. Theory Tech. 39(7), 1194–1204 (1991)CrossRefGoogle Scholar
  22. 22.
    M. Li et al., Low-loss low-cost all-silicon CMOS NLTLs for pulse compression, in IEEE/MTT-S International Microwave Symposium, 3–8 June 2007, pp. 449–452Google Scholar
  23. 23.
    D.W. van der Weide, J.S. Bostak, B.A. Auld, D.M. Bloom, All-electronic generation of 880 fs, 3.5 v shockwaves and their application to a 3 THz free-space signal generation system. Appl. Phys. Lett. 62(1), 22–24 (1993)CrossRefGoogle Scholar
  24. 24.
    M. Li et al., CMOS varactors in NLTL pulse-compression applications, in Proceedings of 37th European Microwave Conference, Munich, 2007, pp.1405–1408Google Scholar
  25. 25.
    A. Jrad et al., A simple and systematic method for the design of tapered nonlinear transmission lines, IEEE/MTT-S Digest, 1998, pp. 1627–1630Google Scholar
  26. 26.
    W.R. Eisenstadt, Y. Eo, S-parameter-based IC interconnect transmission line characterization. IEEE Trans. Comp. Hybrids Manuf. Tech. 15(4), 483–490 (1992)CrossRefGoogle Scholar
  27. 27.
    R.A. Marsland, V. Valdivia, C.J. Madden, M.J.W. Rodwell, D.M. Bloom, 130 GHz GaAs monolithic integrated circuit sampling head. Appl. Phys. Lett. 55(6), 592–594 (1989)CrossRefGoogle Scholar
  28. 28.
    R.Y. Yu, M. Case, M. Kamegawa, M. Sundaram, M.J.W. Rodwell, A.W. Gossard, 275 GHz 3-mask integrated GaAs sampling circuit. Electron. Lett. 26(13), 949–951 (1990)CrossRefGoogle Scholar
  29. 29.
    S.T. Allen, U. Bhattacharya, M.J.W. Rodwell, 4 THz sidewall-etched varactros for sub-mm-wave sampling circuits. GaAs IC Symposium, 2003, pp. 285–287Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Lorenzo Tripodi
    • 1
  • Marion K. Matters-Kammerer
    • 2
  • Dave van Goor
    • 1
  • Xin Hu
    • 3
  • Anders Rydberg
    • 3
  1. 1.Philips ResearchEindhovenThe Netherlands
  2. 2.Electrical EngineeringTU EindhovenEindhovenThe Netherlands
  3. 3.Uppsala UniversityUppsalaSweden

Personalised recommendations