Anoxia pp 51-81 | Cite as

The Biochemical Adaptations of Mitochondrion-Related Organelles of Parasitic and Free-Living Microbial Eukaryotes to Low Oxygen Environments

Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 21)

Abstract

While many multicellular anaerobes possess mitochondria that resemble those of aerobic eukaryotes, microbial eukaryotes that live exclusively in anoxic and low oxygen environments harbor mitochondrion-related organelles (MROs). Currently, these organelles are broadly classified as either hydrogenosomes (anaerobic ATP-producing organelles that produce molecular hydrogen) or mitosomes (organelles that do not generate ATP); however, ongoing studies of diverse microbial lineages are revealing a wider spectrum of functional types. In adaptation to low oxygen conditions, the MROs of anaerobic eukaryotes have acquired unique characteristics, some of which do not appear to derive from the α-proteobacterium that gave rise to the ancestral mitochondrion. These characteristics include alternative pathways for pyruvate metabolism as well as enzymes such as [FeFe]-hydrogenases that collectively function in anaerobic energy metabolism. In addition to these pathways, the mitochondrial protein import, metabolic exchange, and Fe–S cluster biosynthesis machineries are present in all MROs studied to date; these systems support the protein, solute, and energy requirements of both the organelles and the cells that harbor them. MROs represent a unique class of organelles that have successfully adapted by reduction or alteration of existing pathways as well as by acquisition of novel metabolic machineries that allowed their hosts to thrive in diverse environments without oxygen.

Keywords

Pyruvate Dehydrogenase Complex Entamoeba Histolytica Thalassiosira Pseudonana Pyruvate Formate Lyase Mitochondrial Carrier Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported from grant MOP-62809 from the Canadian Institutes of Health Research awarded to AJR. ADT was supported by a Marie Curie International Outgoing fellowship. AJR was supported by the Integrated Microbial Biodiversity program of the Canadian Institute for Advanced Research and the Canada Research Chairs program. MML was supported by an Aide à la Formation-Recherche awarded by the Fonds National de la Recherche (Luxembourg). CWS was supported by scholarships from the Natural Sciences and Engineering Research Council of Canada and Killam Trusts.

References

  1. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304(5669):441–445PubMedCrossRefGoogle Scholar
  2. Akhmanova A, Voncken FG, Hosea KM, Harhangi H, Keltjens JT, op den Camp HJ, Vogels GD, Hackstein JH (1999) A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol Microbiol 32(5):1103–1114PubMedCrossRefGoogle Scholar
  3. Ali V, Shigeta Y, Tokumoto U, Takahashi Y, Nozaki T (2004) An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron-sulfur cluster assembly under anaerobic conditions. J Biol Chem 279(16):16863–16874PubMedCrossRefGoogle Scholar
  4. Arco AD, Satrustegui J (2005) New mitochondrial carriers: an overview. Cell Mol Life Sci 62(19–20):2204–2227PubMedCrossRefGoogle Scholar
  5. Atteia A, van Lis R, Gelius-Dietrich G, Adrait A, Garin J, Joyard J, Rolland N, Martin W (2006) Pyruvate formate-lyase and a novel route of eu-karyotic ATP synthesis in Chlamydomonas mitochondria. J Biol Chem 281(15):9909–9918PubMedCrossRefGoogle Scholar
  6. Barbera MJ, Ruiz-Trillo I, TJY A, Bery A, Silberman JD, Roger AJ (2010) Sawyeria marylandensis (Hetetolobosea) has a hydrogensome with novel metabolic properties. Eukaryot Cell 9(12):1913–1924PubMedCrossRefGoogle Scholar
  7. Beinert H, Kiley PJ (1999) Fe-S proteins in sensing and regulatory functions. Curr Opin Chem Biol 3(2):152–157PubMedCrossRefGoogle Scholar
  8. Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden SW, van Hellemond JJ, Ricard G, Huynen M, Tielens AG, Hackstein JH (2004) The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Mol Microbiol 51(5):1389–1399PubMedCrossRefGoogle Scholar
  9. Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldon T, van Hoek AH, Moon-van der Staay SY, Koopman WJ, van Hellemond JJ, Tielens AG, Friedrich T, Veenhuis M, Huynen MA, Hackstein JH (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434(7029):74–79PubMedCrossRefGoogle Scholar
  10. Boxma B, Ricard G, van Hoek AH, Severing E, Moon-van der Staay SY, van der Staay GW, van Alen TA, de Graaf RM, Cremers G, Kwantes M, McEwan NR, Newbold CJ, Jouany JP, Michalowski T, Pristas P, Huynen MA, Hackstein JH (2007) The [FeFe] hydrogenase of Nyctotherus ovalis has a chimeric origin. BMC Evol Biol 7:230PubMedCrossRefGoogle Scholar
  11. Buetow DE (1989) The mitochondrion. In: The Biology of Euglena. Vol. 4: Subcellular Biochemistry and Molecular Biology. Academic Press, San Diego, pp 247–314Google Scholar
  12. Bui ET, Johnson PJ (1996) Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis. Mol Biochem Parasitol 76(1–2):305–310PubMedCrossRefGoogle Scholar
  13. Bui ETN, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci U S A 93:9651–9656PubMedCrossRefGoogle Scholar
  14. Burri L, Williams BA, Bursac D, Lithgow T, Keeling PJ (2006) Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc Natl Acad Sci U S A 103(43):15916–15920PubMedCrossRefGoogle Scholar
  15. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Muller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu CL, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik SB, Logsdon JM Jr, Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu CH, Lee YS, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, Johnson PJ (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315(5809):207–212PubMedCrossRefGoogle Scholar
  16. Chan KW, Slotboom DJ, Cox S, Embley TM, Fabre O, van der Giezen M, Harding M, Horner DS, Kunji ER, Leon-Avila G, Tovar J (2005) A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr Biol 15(8):737–742PubMedCrossRefGoogle Scholar
  17. Ctrnacta V, Ault JG, Stejskal F, Keithly JS (2006) Localization of pyruvate:NADP  +  oxidoreductase in sporozoites of Cryptosporidium parvum. J Eukaryot Microbiol 53(4):225–231PubMedCrossRefGoogle Scholar
  18. Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Kristensen RM (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8:30PubMedCrossRefGoogle Scholar
  19. Davidson EA, van der Giezen M, Horner DS, Embley TM, Howe CJ (2002) An [Fe] hydrogenase from the anaerobic hydrogenosome-containing fungus Neocallimastix frontalis L2. Gene 296(1–2):45–52PubMedCrossRefGoogle Scholar
  20. de Graaf RM, Duarte I, van Alen TA, Kuiper JW, Schotanus K, Rosenberg J, Huynen MA, Hackstein JH (2009) The hydrogenosomes of Psalteriomonas lanterna. BMC Evol Biol 9:287PubMedCrossRefGoogle Scholar
  21. Do PM, Angerhofer A, Hrdy I, Bardonova L, Ingram LO, Shanmugam KT (2009) Engineering Escherichia coli for fermentative dihydrogen production: potential role of NADH-ferredoxin oxidoreductase from the hydrogenosome of anaerobic protozoa. Appl Biochem Biotechnol 153(1–3):21–33PubMedCrossRefGoogle Scholar
  22. Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313(5785):314–318PubMedCrossRefGoogle Scholar
  23. Dolezal P, Dagley MJ, Kono M, Wolynec P, Likic VA, Foo JH, Sedinova M, Tachezy J, Bachmann A, Bruchhaus I, Lithgow T (2010) The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog 6(3):e1000812PubMedCrossRefGoogle Scholar
  24. Dubini A, Mus F, Seibert M, Grossman AR, Posewitz MC (2009) Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity. J Biol Chem 284(11):7201–7213PubMedCrossRefGoogle Scholar
  25. Dyall SD, Koehler CM, Delgadillo-Correa MG, Bradley PJ, Plumper E, Leuenberger D, Turck CW, Johnson PJ (2000) Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol 20(7):2488–2497PubMedCrossRefGoogle Scholar
  26. Dyall SD, Yan W, Delgadillo-Correa MG, Lunceford A, Loo JA, Clarke CF, Johnson PJ (2004) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431(7012):1103–1107PubMedCrossRefGoogle Scholar
  27. Ellis JE, Williams R, Cole D, Cammack R, Lloyd D (1993) Electron transport components of the parasitic protozoon Giardia lamblia. FEBS Lett 325(3):196–200PubMedCrossRefGoogle Scholar
  28. Embley TM (2006) Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc Lond B Biol Sci 361(1470):1055–1067PubMedCrossRefGoogle Scholar
  29. Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440(7084):623–630PubMedCrossRefGoogle Scholar
  30. Field J, Rosenthal B, Samuelson J (2000) Early lateral transfer of genes encoding malic enzyme, acetyl-CoA synthetase and alcohol dehydrogenases from anaerobic prokaryotes to Entamoeba histolytica. Mol Microbiol 38(3):446–455PubMedCrossRefGoogle Scholar
  31. Finlay B, Fenchel T (1989) Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol Lett 65:311–314CrossRefGoogle Scholar
  32. Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276(9):6125–6132PubMedCrossRefGoogle Scholar
  33. Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270(13):2750–2758PubMedCrossRefGoogle Scholar
  34. Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140(5):631–642PubMedCrossRefGoogle Scholar
  35. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26(2):219–240PubMedCrossRefGoogle Scholar
  36. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Ruth-erford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906):498–511PubMedCrossRefGoogle Scholar
  37. Gerber J, Lill R (2002) Biogenesis of iron-sulfur proteins in eukaryotes: components, mechanism and pathology. Mitochondrion 2(1–2):71–86PubMedCrossRefGoogle Scholar
  38. Gill EE, Diaz-Trivino S, Barbera MJ, Silberman JD, Stechmann A, Gaston D, Tamas I, Roger AJ (2007) Novel mitochondrion-related organelles in the anaerobic amoeba Mastigamoeba balamuthi. Mol Microbiol 66(6):1306–1320PubMedCrossRefGoogle Scholar
  39. Goldberg AV, Molik S, Tsaousis AD, Neumann K, Kuhnke G, Delbac F, Vivares CP, Hirt RP, Lill R, Embley TM (2008) Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature 452(7187):624–628PubMedCrossRefGoogle Scholar
  40. Hackstein JH (2005) Eukaryotic Fe-hydrogenases – old eukaryotic heritage or adaptive acquisitions? Biochem Soc Trans 33(Pt 1):47–50PubMedGoogle Scholar
  41. Hampl V, Silberman JD, Stechmann A, Diaz-Trivino S, Johnson PJ, Roger AJ (2008) Genetic evidence for a mitochondriate ancestry in the ‘amitochondriate’ flagellate Trimastix pyriformis. PLoS One 3(1):e1383PubMedCrossRefGoogle Scholar
  42. Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269(3):1022–1032PubMedCrossRefGoogle Scholar
  43. Heifetz PB, Forster B, Osmond CB, Giles LJ, Boynton JE (2000) Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiol 122(4):1439–1445PubMedCrossRefGoogle Scholar
  44. Hemschemeier A, Jacobs J, Happe T (2008) Biochemical and physiological characterization of the pyruvate formate-lyase Pfl1 of Chlamydomonas reinhardtii, a typically bacterial enzyme in a eukaryotic alga. Eukaryot Cell 7(3):518–526PubMedCrossRefGoogle Scholar
  45. Horner DS, Hirt RP, Embley TM (1999) A single eubacterial origin of eukaryotic pyruvate: ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes. Mol Biol Evol 16(9):1280–1291PubMedGoogle Scholar
  46. Horner DS, Foster PG, Embley TM (2000) Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17(11):1695–1709PubMedGoogle Scholar
  47. Horner DS, Heil B, Happe T, Embley TM (2002) Iron hydrogenases–ancient enzymes in modern eukaryotes. Trends Biochem Sci 27(3):148–153PubMedCrossRefGoogle Scholar
  48. Hrdy I, Muller M (1995) Primary structure and eubacterial relationships of the pyruvate:ferredoxin oxido­reductase of the amitochondriate eukaryote Trichomonas vaginalis. J Mol Evol 41(3):388–396PubMedCrossRefGoogle Scholar
  49. Hrdy I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J, Embley TM (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432(7017):618–622PubMedCrossRefGoogle Scholar
  50. Hug LA, Stechmann A, Roger AJ (2010) Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. Mol Biol Evol 27(2):311–324PubMedCrossRefGoogle Scholar
  51. Inui H, Miyatake K, Nakano Y, Kitaoka S (1985) The physiological role of oxygen-sensitive pyruvate dehydrogenase in mitochondrial fatty acid synthesis in Euglena gracilis. Arch Biochem Biophys 237(2):423–429PubMedCrossRefGoogle Scholar
  52. Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414(6862):450–453PubMedCrossRefGoogle Scholar
  53. Kunji ER (2004) The role and structure of mitochondrial carriers. FEBS Lett 564(3):239–244PubMedCrossRefGoogle Scholar
  54. Kunji ER, Robinson AJ (2006) The conserved substrate binding site of mitochondrial carriers. Biochim Biophys Acta 1757(9–10):1237–1248PubMedGoogle Scholar
  55. LaGier MJ, Tachezy J, Stejskal F, Kutisova K, Keithly JS (2003) Mitochondrial-type iron-sulfur cluster biosynthesis genes (IscS and IscU) in the api-complexan Cryptosporidium parvum. Microbiology 149(Pt 12):3519–3530PubMedCrossRefGoogle Scholar
  56. Lantsman Y, Tan KS, Morada M, Yarlett N (2008) Biochemical characterization of a mitochondrial-like organelle from Blastocystis sp. subtype 7. Microbiology 154(Pt 9):2757–2766PubMedCrossRefGoogle Scholar
  57. Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460(7257):831–838PubMedCrossRefGoogle Scholar
  58. Lill R, Kispal G (2000) Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem Sci 25(8):352–356PubMedCrossRefGoogle Scholar
  59. Lill R, Muhlenhoff U (2005) Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem Sci 30(3):133–141PubMedCrossRefGoogle Scholar
  60. Lill R, Muhlenhoff U (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22:457–486PubMedCrossRefGoogle Scholar
  61. Lindmark DG, Muller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Trichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248(22):7724–7728PubMedGoogle Scholar
  62. Lithgow T, Schneider A (2010) Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc Lond B Biol Sci 365(1541):799–817PubMedCrossRefGoogle Scholar
  63. Lloyd D, Ralphs JR, Harris JC (2002a) Giardia intestinalis, a eukaryote without hydrogenosomes, produces hydrogen. Microbiology 148(Pt 3):727–733PubMedGoogle Scholar
  64. Lloyd D, Ralphs JR, Harris JC (2002b) Hydrogen production in Giardia intestinalis, a eukaryote with no hydrogenosomes. Trends Parasitol 18(4):155–156PubMedCrossRefGoogle Scholar
  65. Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, Nozaki T, Suh B, Pop M, Duchene M, Ackers J, Tannich E, Leippe M, Hofer M, Bruchhaus I, Willhoeft U, Bhattacharya A, Chillingworth T, Churcher C, Hance Z, Harris B, Harris D, Jagels K, Moule S, Mungall K, Ormond D, Squares R, Whitehead S, Quail MA, Rabbinowitsch E, Norbertczak H, Price C, Wang Z, Guillen N, Gilchrist C, Stroup SE, Bhattacharya S, Lohia A, Foster PG, Sicheritz-Ponten T, Weber C, Singh U, Mukherjee C, El-Sayed NM, Petri WA Jr, Clark CG, Embley TM, Barrell B, Fraser CM, Hall N (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433(7028):865–868PubMedCrossRefGoogle Scholar
  66. Mai Z, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19(3):2198–2205PubMedGoogle Scholar
  67. Maralikova B, Ali V, Nakada-Tsukui K, Nozaki T, van der Giezen M, Henze K, Tovar J (2010) Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria. Cell Microbiol 12(3):331–342PubMedCrossRefGoogle Scholar
  68. Martin W, Muller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392(6671):37–41PubMedCrossRefGoogle Scholar
  69. Marvin-Sikkema FD, Pedro Gomes TM, Grivet JP, Gottschal JC, Prins RA (1993) Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2. Arch Microbiol 160(5):388–396PubMedCrossRefGoogle Scholar
  70. Mazet M, Diogon M, Alderete JF, Vivares CP, Delbac F (2008) First molecular characterisation of hydrogenosomes in the protozoan parasite Histomonas meleagridis. Int J Parasitol 38(2):177–190PubMedCrossRefGoogle Scholar
  71. Meyer J (2007) [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci 64(9):1063–1084PubMedCrossRefGoogle Scholar
  72. Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T (2009) Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A 106(51):21731–21736PubMedCrossRefGoogle Scholar
  73. Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, Davids BJ, Dawson SC, Elmen-dorf HG, Hehl AB, Holder ME, Huse SM, Kim UU, Lasek-Nesselquist E, Manning G, Nigam A, Nixon JE, Palm D, Passamaneck NE, Prabhu A, Reich CI, Reiner DS, Samuelson J, Svard SG, Sogin ML (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317(5846):1921–1926PubMedCrossRefGoogle Scholar
  74. Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW (2010) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG). Nature 465(7295):248–251PubMedCrossRefGoogle Scholar
  75. Muller M (1993) The hydrogenosome. J Gen Microbiol 139(12):2879–2889PubMedGoogle Scholar
  76. Muller M (2007) The road to hydrogenosomes. In: Martin W, Muller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin Heidelberg, pp 1–11CrossRefGoogle Scholar
  77. Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282(35):25475–25486PubMedCrossRefGoogle Scholar
  78. Nixon JE, Field J, McArthur AG, Sogin ML, Yarlett N, Loftus BJ, Samuelson J (2003) Iron-dependent hydrogenases of Entamoeba histolytica and Giardia lamblia: activity of the recombinant entamoebic enzyme and evidence for lateral gene transfer. Biol Bull 204(1):1–9PubMedCrossRefGoogle Scholar
  79. Perez-Brocal V, Clark CG (2008) Analysis of two genomes from the mitochondrion-like organelle of the intestinal parasite Blastocystis: complete sequences, gene content, and genome organization. Mol Biol Evol 25(11):2475–2482PubMedCrossRefGoogle Scholar
  80. Pfanner N, Wiedemann N, Meisinger C, Lithgow T (2004) Assembling the mitochondrial outer membrane. Nat Struct Mol Biol 11(11):1044–1048PubMedCrossRefGoogle Scholar
  81. Pilet E, Nicolet Y, Mathevon C, Douki T, Fontecilla-Camps JC, Fontecave M (2009) The role of the maturase HydG in [FeFe]-hydrogenase active site synthesis and assembly. FEBS Lett 583(3):506–511PubMedCrossRefGoogle Scholar
  82. Posewitz MC, Smolinski SL, Kanakagiri S, Melis A, Seibert M, Ghirardi ML (2004) Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell 16(8):2151–2163PubMedCrossRefGoogle Scholar
  83. Putz S, Dolezal P, Gelius-Dietrich G, Bohacova L, Tachezy J, Henze K (2006) Fe-hydrogenase maturases in the hydrogenosomes of Trichomonas vaginalis. Eukaryot Cell 5(3):579–586PubMedCrossRefGoogle Scholar
  84. Py B, Barras F (2010) Building Fe-S proteins: bacterial strategies. Nat Rev Microbiol 8(6):436–446PubMedCrossRefGoogle Scholar
  85. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33(Web Server issue):W116–W120PubMedCrossRefGoogle Scholar
  86. Reeves RE, Warren LG, Susskind B, Lo HS (1977) An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J Biol Chem 252(2):726–731PubMedGoogle Scholar
  87. Riviere L, van Weelden SW, Glass P, Vegh P, Coustou V, Biran M, van Hellemond JJ, Bringaud F, Tielens AG, Boshart M (2004) Acetyl:succinate CoA-transferase in procyclic Trypanosoma brucei. Gene identification and role in carbohydrate metabolism. J Biol Chem 279(44):45337–45346PubMedCrossRefGoogle Scholar
  88. Rodriguez MA, Hidalgo ME, Sanchez T, Orozco E (1996) Cloning and characterization of the Entamoeba histolytica pyruvate: ferredoxin oxidoreductase gene. Mol Biochem Parasitol 78(1–2):273–277PubMedCrossRefGoogle Scholar
  89. Roger AJ, Silberman JD (2002) Cell evolution: mitochondria in hiding. Nature 418(6900):827–829PubMedCrossRefGoogle Scholar
  90. Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W (2001) Pyruvate: NADP  +  oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol 18(5):710–720PubMedGoogle Scholar
  91. Sanchez LB, Muller M (1996) Purification and characterization of the acetate forming enzyme, acetyl-CoA synthetase (ADP-forming) from the amitochondriate protist, Giardia lamblia. FEBS Lett 378(3):240–244PubMedCrossRefGoogle Scholar
  92. Sanchez LB, Galperin MY, Muller M (2000) Acetyl-CoA synthetase from the amitochondriate eukaryote Giardia lamblia belongs to the newly recognized superfamily of acyl-CoA synthetases (Nucleoside diphosphate-forming). J Biol Chem 275(8):5794–5803PubMedCrossRefGoogle Scholar
  93. Sawers G, Watson G (1998) A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol Microbiol 29(4):945–954PubMedCrossRefGoogle Scholar
  94. Shepard EM, McGlynn SE, Bueling AL, Grady-Smith CS, George SJ, Winslow MA, Cramer SP, Peters JW, Broderick JB (2010) Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold. Proc Natl Acad Sci U S A 107(23):10448–10453PubMedCrossRefGoogle Scholar
  95. Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meis-inger C (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207–13212PubMedCrossRefGoogle Scholar
  96. Stairs CW, Roger AJ, Hampl V (2011) Eukaryotic pyruvate formate lyase and its activating enzyme were acquired laterally from a firmicute. Mol Biol Evol 28:2087–2099Google Scholar
  97. Stechmann A, Hamblin K, Perez-Brocal V, Gaston D, Richmond GS, van der Giezen M, Clark CG, Roger AJ (2008) Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol 18(8):580–585PubMedCrossRefGoogle Scholar
  98. Steinbuchel A, Muller M (1986) Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. Mol Biochem Parasitol 20(1):57–65PubMedCrossRefGoogle Scholar
  99. Sutak R, Dolezal P, Fiumera HL, Hrdy I, Dancis A, Delgadillo-Correa M, Johnson PJ, Muller M, Tachezy J (2004) Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci U S A 101(28):10368–10373PubMedCrossRefGoogle Scholar
  100. Thauer RK, Kirchniawy FH, Jungermann KA (1972) Properties and function of the pyruvate-formate-lyase reaction in clostridiae. Eur J Biochem 27(2):282–290PubMedCrossRefGoogle Scholar
  101. Tielens AG, Rotte C, van Hellemond JJ, Martin W (2002) Mitochondria as we don’t know them. Trends Biochem Sci 27(11):564–572PubMedCrossRefGoogle Scholar
  102. Tielens AG, van Grinsven KW, Henze K, van Hellemond JJ, Martin W (2010) Acetate formation in the energy metabolism of parasitic helminths and protists. Int J Parasitol 40(4):387–397PubMedCrossRefGoogle Scholar
  103. Tjaden J, Haferkamp I, Boxma B, Tielens AG, Huynen M, Hackstein JH (2004) A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles. Mol Microbiol 51(5):1439–1446PubMedCrossRefGoogle Scholar
  104. Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32(5):1013–1021PubMedCrossRefGoogle Scholar
  105. Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez M, Muller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426(6963):172–176PubMedCrossRefGoogle Scholar
  106. Tsaousis AD, Kunji ER, Goldberg AV, Lucocq JM, Hirt RP, Embley TM (2008) A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi. Nature 453(7194):553–556PubMedCrossRefGoogle Scholar
  107. Tsaousis AD, Stechmann A, Perez-Brocal V, Hamblin KA, van der Giezen M, Clark CG (2010) The Blastocystis mitochondrion-like organelles. In Anaerobic Parasitic Protozoa: Genomics and Molecular Biology, C.G. Clark, R.D. Adam, and P.J. Johnson, eds. (Horizon Scientific Press)Google Scholar
  108. Tsaousis AD, Gaston D, Stechmann A, Walker PB, Lithgow T, Roger AJ (2011) A functional Tom70 in the human parasite Blastocystis sp.: implications for the evolution of the mitochondrial import apparatus. Mol Biol Evol 28(1):781–791PubMedCrossRefGoogle Scholar
  109. van der Giezen M, Slotboom DJ, Horner DS, Dyal PL, Harding M, Xue GP, Embley TM, Kunji ER (2002) Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO 21(4):572–579CrossRefGoogle Scholar
  110. van der Giezen M, Birdsey GM, Horner DS, Lucocq J, Dyal PL, Benchimol M, Danpure CJ, Embley TM (2003) Fungal hydrogenosomes contain mitochondrial heat-shock proteins. Mol Biol Evol 20(7):1051–1061PubMedCrossRefGoogle Scholar
  111. van der Giezen M, Cox S, Tovar J (2004) The iron-sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer. BMC Evol Biol 4:7PubMedCrossRefGoogle Scholar
  112. van Grinsven KW, Rosnowsky S, van Weelden SW, Putz S, van der Giezen M, Martin W, van Hellemond JJ, Tielens AG, Henze K (2008) Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: identification and characterization. J Biol Chem 283(3):1411–1418PubMedCrossRefGoogle Scholar
  113. Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107(10):4206–4272PubMedCrossRefGoogle Scholar
  114. Vincent KA, Parkin A, Lenz O, Albracht SP, Fontecilla-Camps JC, Cammack R, Friedrich B, Armstrong FA (2005) Electrochemical definitions of O2 sensitivity and oxidative inactivation in hydrogenases. J Am Chem Soc 127(51):18179–18189PubMedCrossRefGoogle Scholar
  115. Voncken FG, Boxma B, van Hoek AH, Akhmanova AS, Vogels GD, Huynen M, Veenhuis M, Hackstein JH (2002) A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp. L2. Gene 284(1–2):103–112PubMedCrossRefGoogle Scholar
  116. Wagner AF, Frey M, Neugebauer FA, Schafer W, Knappe J (1992) The free radical in pyruvate formate-lyase is located on glycine-734. Proc Natl Acad Sci U S A 89(3):996–1000PubMedCrossRefGoogle Scholar
  117. Williams BA, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418(6900):865–869PubMedCrossRefGoogle Scholar
  118. Williams BA, Haferkamp I, Keeling PJ (2008) An ADP/ATP-specific mitochondrial carrier protein in the microsporidian Antonospora locustae. J Mol Biol 375(5):1249–1257PubMedCrossRefGoogle Scholar
  119. Wunschiers R, Stangier K, Senger H, Schulz R (2001) Molecular evidence for a Fe-hydrogenase in the green alga Scenedesmus obliquus. Curr Microbiol 42(5):353–360PubMedCrossRefGoogle Scholar
  120. Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236(3):729–739PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V.  2012

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary BioinformaticsDalhousie UniversityHalifaxCanada

Personalised recommendations