Anoxia pp 39-47 | Cite as

Diversity of Anaerobic Prokaryotes and Eukaryotes: Breaking Long-Established Dogmas

Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 21)

Abstract

In the last two decades, a number of novel anaerobic processes were discovered in the prokaryotic world that have profoundly changed our views about the metabolic possibilities in the absence of molecular oxygen. These include the anaerobic oxidation of ammonium with nitrite as electron acceptor (“the ‘anammox’ process”), anaerobic oxidation of methane coupled with sulfate reduction using “reverse methanogenesis,” and anaerobic methane oxidation with reduction of nitrite, a process in which a methanotroph produces its own molecular oxygen needed for the methane monooxygenase reaction by the activity of a nitric oxide dismutase.

Keywords

Molecular Oxygen Anammox Bacterium Benthic Foraminifera Anaerobic Respiration Methane Hydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bernhard JM, Habura A, Bowser SS (2006) An endobiont-bearing allogromiid from the Santa Barbara Basin: implications for the early diversification of foraminifera. J Geophys Res 111:G03002. doi:10.1029/2005JG000158CrossRefGoogle Scholar
  2. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626PubMedCrossRefGoogle Scholar
  3. Broda E (1977) Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol 17:491–493PubMedCrossRefGoogle Scholar
  4. Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuña-González J (2003) N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422:606–608PubMedCrossRefGoogle Scholar
  5. Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Møjberg Kristensen R (2010) The first metazoan living in permanently anoxic conditions. BMC Biol 8:30PubMedCrossRefGoogle Scholar
  6. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dulith BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548PubMedCrossRefGoogle Scholar
  7. Griffin BM, Schott J, Schink B (2007) Nitrite, an electron donor for anoxygenic photosynthesis. Science 316:1870PubMedCrossRefGoogle Scholar
  8. Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462PubMedCrossRefGoogle Scholar
  9. Harwood CS, Burchhardt G, Herrmann H, Fuchs G (1999) Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev 22:439–458CrossRefGoogle Scholar
  10. Hungate RE (1966) The rumen and its microbes. Academic, New YorkGoogle Scholar
  11. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jørgensen BB, Kuenen JG, Sinninghe Damsté JS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611PubMedCrossRefGoogle Scholar
  12. Levin LA (2010) Anaerobic metazoans: no longer an oxymoron. BMC Biol 8:31PubMedCrossRefGoogle Scholar
  13. Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41PubMedCrossRefGoogle Scholar
  14. Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184CrossRefGoogle Scholar
  15. Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889PubMedGoogle Scholar
  16. Oremland RS (2010) NO connection with methane. Nature 464:500–501PubMedCrossRefGoogle Scholar
  17. Oren A (2007) Anaerobes. In: Encyclopedia of life sciences. Wiley, Chichester. doi:10.1002/9780470015902.a0020369Google Scholar
  18. Oren A (2009) Anaerobic respiration. In: Encyclopedia of life sciences. Wiley, Chichester. doi:10.1002/9780470015902.a0001414.pub2Google Scholar
  19. Piña-Ochoa E, Høgslund S, Geslin E, Cedhagen T, Revsbech NP, Nielsen LP, Schweizer M, Jorissen F, Rysdaard S, Risgaard-Petersen N (2010) Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida. Proc Natl Acad Sci USA 107:1148–1153PubMedCrossRefGoogle Scholar
  20. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Sinninghe Damsté JS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921PubMedCrossRefGoogle Scholar
  21. Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MSM, Op den Camp HJM, Derksen JWM, Piña-Ochoa E, Eriksson SP, Nielsen LP, Revsbech NP, Cedhagen T, van der Zwaan GJ (2006) Evidence for complete denitrification in a benthic foraminifer. Nature 443:93–96PubMedCrossRefGoogle Scholar
  22. Schmitz R, Daniel R, Deppenmeier U, Gottschalk G (2006) The anaerobic way of life. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 2. Springer, New York, pp 86–101Google Scholar
  23. Stephenson M (1930) Bacterial metabolism, 1st edn. Longmans/Green & Co, LondonGoogle Scholar
  24. Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449PubMedCrossRefGoogle Scholar
  25. Strous M, Kuenen JG, Fuerst JA, Wagner M, Jetten MSM (2002) The anammox case – a new experimental manifesto for microbiological eco-physiology. Antonie Van Leeuwenhoek 81:693–702PubMedCrossRefGoogle Scholar
  26. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Médigue C, Collingro A, Snel B, Dulith BE, Op den Camp HJM, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes H-W, Weissenbach J, Jetten MSM, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794PubMedCrossRefGoogle Scholar
  27. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276PubMedCrossRefGoogle Scholar
  28. Wolin MJ (1979) The rumen fermentation: a model for microbial interactions in anaerobic ecosystems. Adv Microb Ecol 3:49–77Google Scholar
  29. Zehnder AJB, Svensson BH (1986) Life without oxygen: what can and what cannot? Experientia 42:1197–1205PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V.  2012

Authors and Affiliations

  1. 1.Department of Plant and Environmental Sciences, The Institute of Life Sciences, and the Moshe Shilo Minerva Center for Marine BiogeochemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations