Advertisement

Towards Cognitive Networking: Automatic Wireless Network Recognition Based on MAC Feature Detection

  • Maria-Gabriella Di Benedetto
  • Stefano Boldrini
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 116)

Abstract

A cognitive radio device must be able to discover and recognize wireless networks eventually present in the surrounding environment. This chapter presents a recognition method based on MAC sub-layer features. Based on the fact that every wireless technology has its own specific MAC sub-layer behaviour, as defined by the technology Standard, network recognition can be reached by exploiting this particular behaviour. From the packet exchange pattern, peculiar of a single technology, MAC features can be extracted, and later they can be used for automatic recognition. The advantage of these “high-level” features, instead of physical ones, resides in the simplicity of the method: only a simple energy detector and low-complexity algorithms are required. In this chapter automatic recognition based on MAC features is applied at three cases of wireless networks operating in the ISM 2.4 GHz band: Bluetooth, Wi-Fi and ZigBee. Furthermore, this idea is extended to underlay networks such as Ultra Wide Band networks. A study-case is also presented that provides an illustration of automatic classification between Wi-Fi and Bluetooth networks.

Keywords

Cognitive Radio Correct Classification Rate Enhance Distribute Channel Access Ultra Wide Band Guarantee Time Slot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mitola J III, Maguire GQ Jr (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18. doi: 10.1109/98.788210 CrossRefGoogle Scholar
  2. 2.
    IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs), IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002), pp 0_1-580, 2005. doi:  10.1109/IEEESTD.2005.96290
  3. 3.
    IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999), pp C1-1184, June 12 2007. doi:  10.1109/IEEESTD.2007.373646
  4. 4.
    IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), IEEE Std 802.15.4-2006 (Revision of IEEE Std 802.15.4-2003), pp 0_1-305, 2006. doi:  10.1109/IEEESTD.2006.232110
  5. 5.
    Haykin S, Thomson DJ, Reed JH (2009) Spectrum sensing for cognitive radio. Proc IEEE 97(5):849–877. doi: 10.1109/JPROC.2009.2015711 CrossRefGoogle Scholar
  6. 6.
    Ghasemi A, Sousa ES (2008) Spectrum sensing in cognitive radio networks: requirements, challenges and design trade-offs. IEEE Commun Mag 46(4):32–39. doi: 10.1109/MCOM.2008.4481338 CrossRefGoogle Scholar
  7. 7.
    Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tutor 11(1):116–130, First quarter 2009. doi:  10.1109/SURV.2009.090109 Google Scholar
  8. 8.
    Cabric D, Mishra SM, Brodersen RW (2004) Implementation issues in spectrum sensing for cognitive radios. In: Conference record of the thirty-eighth Asilomar conference on signals, systems and computers, vol 1, 7–10 Nov 2004, pp 772–776. doi:  10.1109/ACSSC.2004.1399240
  9. 9.
    Liang Y-C, Zeng Y, Peh ECY, Hoang AT (2008) Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans Wireless Commun 7(4):1326–1337. doi: 10.1109/TWC.2008.060869 CrossRefGoogle Scholar
  10. 10.
    Lee W-Y, Akyildiz IF (2008) Optimal spectrum sensing framework for cognitive radio networks. IEEE Trans Wireless Commun 7(10):3845–3857. doi:  10.1109/T-WC.2008.070391 CrossRefGoogle Scholar
  11. 11.
    Zeng Yonghong, Liang Ying-Chang (2009) Spectrum-sensing algorithms for cognitive radio based on statistical covariances. IEEE Trans Veh Technol 58(4):1804–1815. doi: 10.1109/TVT.2008.2005267 CrossRefGoogle Scholar
  12. 12.
    Chen Z, Guo N, Qiu RC (2010) Demonstration of real-time spectrum sensing for cognitive radio. In: Military communications conference, MILCOM 2010, Oct 31 2010–Nov 3 2010, pp 323–328. doi:  10.1109/MILCOM.2010.5680333
  13. 13.
    Zeng Y, Liang Y (2009) Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans Commun 57(6):1784–1793. doi: 10.1109/TCOMM.2009.06.070402 CrossRefGoogle Scholar
  14. 14.
    Do T, Mark BL (2010) Joint spatial—temporal spectrum sensing for cognitive radio networks. IEEE Trans Vehicular Technol 59(7):3480–3490. doi: 10.1109/TVT.2010.2050610 CrossRefGoogle Scholar
  15. 15.
    Filo M, Hossain A, Biswas AR, Piesiewicz R (2009) Cognitive pilot channel: Enabler for radio systems coexistence. In: Second international workshop on cognitive radio and advanced spectrum management, (CogART 2009), pp 17–23. doi:  10.1109/COGART.2009.5167226
  16. 16.
    Ishizu K, Murakami H, Harada H (2011) Feasibility study on spectrum sharing type cognitive radio system with outband pilot channel. In: 2011 sixth international ICST conference on cognitive radio oriented wireless networks and communications (CROWNCOM), pp 286–290Google Scholar
  17. 17.
    Di Benedetto M-G, Boldrini S, Martin Martin CJ, Roldan Diaz J (2010) Automatic network recognition by feature extraction: a case study in the ISM band. In: 2010 Proceedings of the fifth international conference on cognitive radio oriented wireless networks and communications (CROWNCOM), pp 1–5, 9–11. doi:  10.4108/ICST.CROWNCOM2010.9274
  18. 18.
    Zhuan Y, Memik G, Grosspietsch J (2008) Energy detection using estimated noise variance for spectrum sensing in cognitive radio networks. In: Proceedings of IEEE wireless communications and networking conference, WCNC 2008, March 31 2008–April 3 2008, pp 711–716. doi:  10.1109/WCNC.2008.131
  19. 19.
    Di Benedetto M-G, Giancola G (2004) Understanding ultra wide band radio fundamentals, 1st edn. Prentice Hall PTR, Englewood Cliffs. ISBN: 0-13-148003-0Google Scholar
  20. 20.
    Francone M, Domenicali D, Di Benedetto M-G (2006) Time-varying interference spectral analysis for Cognitive UWB networks. In: 32nd annual conference on IEEE industrial electronics, IECON 2006, 6–10 Nov 2006, pp 3205–3210. doi:  10.1109/IECON.2006.348076
  21. 21.
    Boldrini S, Ferrante GC, Di Benedetto M-G (2011) UWB network recognition based on impulsiveness of energy profiles. In: 2011 IEEE international conference on ultra-wideband (ICUWB), 14–16 Sept 2011, pp 327–330. doi:  10.1109/ICUWB.2011.6058856
  22. 22.
    Benco S, Boldrini S, Ghittino A, Annese S, Di Benedetto M-G (2010) Identification of packet exchange patterns based on energy detection: the Bluetooth case. In: 2010 3rd international symposium on applied sciences in biomedical and communication technologies (ISABEL),7–10 Nov 2010, pp 1–5. doi:  10.1109/ISABEL.2010.5702776
  23. 23.
    Theodoridis S, Koutroumbas K (2009) Pattern recognition, 4th edn. Elsevier Academic Press, New York. ISBN: 978-1-59749-272-0Google Scholar
  24. 24.
    Gallant SI (1990) Perceptron-based learning algorithms. IEEE Trans Neural Netw 1(2):179–191. doi: 10.1109/72.80230 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Maria-Gabriella Di Benedetto
    • 1
  • Stefano Boldrini
    • 1
  1. 1.DIET DepartmentSpaienza University of RomeRomeItaly

Personalised recommendations