Phaseolus vulgaris

  • T. K. Lim
Chapter

Abstract

Borletti Bean, Bush Bean, Climbing Bean, Common Bean, Dry Bean, Dwarf Bean, French Bean, Field Bean, Flageolet Bean, Garden Bean, Green Bean, Haricot, Haricot Bean, Kidney Bean, Mange-Tout, Navy Bean, Pea Bean, Pole Bean, Pop Bean, Popping Bean, Rose Family Dry Bean, Runner Bean, Snap Bean, String Bean, Wax Beans, Runner beans.

Keywords

Common Bean Phytic Acid Condensed Tannin Resistant Starch Oxygen Radical Absorb Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Selected References

  1. Adebamowo CA, Cho E, Sampson L, Katan MB, Spiegelman D, Willett WC, Holmes MD (2005) Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer. Int J Cancer 114(4):628–633PubMedCrossRefGoogle Scholar
  2. Alves M, Chaves I, Carrilho D, Veloso M, Ricardo CP (2010) Detection of novel trypsin inhibitors in the cotyledons of Phaseolus vulgaris seeds. J Plant Physiol 167(10):848–854Google Scholar
  3. Amarowicz R, Dykes GA, Pegg RB (2008) Antibacterial activity of tannin constituents from Phaseolus vulgaris, Fagoypyrum esculentum, Corylus avellana and Juglans nigra. Fitoterapia 79(3):217–219Google Scholar
  4. Angioi SA, Rau D, Attene G, Nanni L, Bellucci E, Logozzo G, Negri V, Spagnoletti Zeuli PL, Papa R (2010) Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theor Appl Genet 121(5):829–843Google Scholar
  5. Anon (2010) Phaseolus vulgaris. http://en.wikipedia.org/wiki/Phaseolus_vulgaris
  6. Antov MG, Sćiban MB, Petrović NJ (2010) Proteins from common bean (Phaseolus vulgaris) seed as a natural coagulant for potential application in water turbidity removal. Bioresour Technol 101(7):2167–2172Google Scholar
  7. Aparicio-Fernàndez X, García-Gasca T, Yousef GG, Lila MA, de Mejia EG, Loarca-Pina G (2006) Chemopreventive activity of polyphenolics from black jamapa bean (Phaseolus vulgaris L.) on HeLa and HaCaT cells. J Agric Food Chem 54(6):2116–2122Google Scholar
  8. Aparicio-Fernández X, Reynoso-Camacho R, Castaño-Tostado E, García-Gasca T, González de Mejía E, Guzmán-Maldonado SH, Elizondo G, Yousef GG, Lila MA, Loarca-Pina G (2008) Antiradical capacity and induction of apoptosis on HeLa cells by a Phaseolus vulgaris extract. Plant Foods Hum Nutr 63(1):35–40Google Scholar
  9. Aparicio-Fernandez X, Yousef GG, Loarca-Pina G, Gonzalez de Mejia E, Lila MM (2005) Characterization of polyphenolics in the seed coat of Black Jamapa bean (Phaseolus vulgaris L.). J Agric Food Chem 53(11):4615–4622Google Scholar
  10. Archer S, Meng S, Wu J, Johnson J, Tang R, Hodin R (1998) Butyrate inhibits colon carcinoma cell growth through two distinct pathways. Surgery 124(2):248–253Google Scholar
  11. Barampama Z, Simard RE (1995) Effects of soaking, cooking and fermentation on composition, in-vitro starch digestibility and nutritive value of common beans. Plant Foods Hum Nutr 48(4):349–365Google Scholar
  12. Bardocz S, Grant G, Duguid TJ, Brown DS, Pusztai A, Pryme IF (1997) Intracellular levels of polyamines in Krebs II lymphosarcoma cells in mice fed phytohaemagglutinin-containing diets are coupled with altered tumour growth. Cancer Lett 121(1):25–29Google Scholar
  13. Batista KA, Prudêncio SH, Fernandes KF (2010) Changes in the functional properties and antinutritional factors of extruded hard-to-cook common beans (Phaseolus vulgaris, L.). J Food Sci 75(3):C286–C290Google Scholar
  14. Bawadi HA, Bansode RR, Trappey A 2nd, Truax RE, Losso JN (2005) Inhibition of Caco-2 colon, MCF-7 and Hs578T breast, and DU 145 prostatic cancer cell proliferation by water-soluble black bean condensed tannins. Cancer Lett 18(2):153–162Google Scholar
  15. Beninger CW, Hosfield GL (1999) Flavonol glycosides from Montcalm dark red kidney bean: implications for the genetics of seed coat color in Phaseolus vulgaris L. J Agric Food Chem 47(10):4079–4082Google Scholar
  16. Beninger CW, Hosfield GL (2003) Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. J Agric Food Chem 51(27):7879–7883Google Scholar
  17. Beninger CW, Hosfield GL, Bassett MJ (1999) Flavonoid composition of three genotypes of dry bean (Phaseolus vulgaris L.) differing in seedcoat color. J Am Soc Hortic Sci 124(5):514–518Google Scholar
  18. Boateng J, Verghese M, Walker LT, Ogutu S (2008) Effect of processing on antioxidant contents in selected dry beans (Phaseolus spp. L.). LWT Food Sci Technol 41(9):1541–1547Google Scholar
  19. Bobe G, Barrett KG, Mentor-Marcel RA, Saffiotti U, Young MR, Colburn NH, Albert PS, Bennink MR, Lanza E (2008) Dietary cooked navy beans and their fractions attenuate colon carcinogenesis in azoxymethane-induced ob/ob mice. Nutr Cancer 60(3):373–381Google Scholar
  20. Campos-Vega R, Reynoso-Camacho R, Pedraza-Aboytes G, Acosta-Gallegos JA, Guzman-Maldonado SH, Paredes-Lopez O, Oomah BD, Loarca-Piña G (2009) Chemical composition and in vitro polysaccharide fermentation of different beans (Phaseolus vulgaris L.). J Food Sci 74(7):T59–T65Google Scholar
  21. Carai MAM, Fantini N, Loi B, Colombo G, Riva A, Morazzoni P (2009) Potential efficacy of preparations derived from Phaseolus vulgaris in the control of appetite, energy intake, and carbohydrate metabolism. Targeted Ther 2:149–153Google Scholar
  22. Cardador-Martínez A, Castaño-Tostado E, Loarca-Piña G (2002a) Antimutagenic activity of natural phenolic compounds present in the common bean (Phaseolus vulgaris) against aflatoxin B1. Food Addit Contam 19(1):62–69Google Scholar
  23. Cardador-Martínez A, Loarca-Piña G, Oomah BD (2002b) Antioxidant activity in common beans (Phaseolus vulgaris L.). J Agric Food Chem 50(24):6975–6980Google Scholar
  24. Celleno L, Tolaini MV, D’Amore A, Perricone NV, Preuss HG (2007) A dietary supplement containing standardized Phaseolus vulgaris extract influences body composition of overweight men and women. Int J Med Sci 4(1):45–52Google Scholar
  25. Choung MG, Choi BR, An YN, Chu YH, Cho YS (2003) Anthocyanin profile of Korean cultivated kidney bean (Phaseolus vulgaris L.). J Agric Food Chem 51(24):7040–7043Google Scholar
  26. da S Queiroz-Monici K, Costa GE, da Silva N, Reis SM, de Oliveira AC (2005) Bifidogenic effect of dietary fiber and resistant starch from leguminous on the intestinal microbiota of rats. Nutrition 21(5):602–609Google Scholar
  27. de Mejía EG, Castaño-Tostado E, Loarca-Piña G (1999) Antimutagenic effects of natural phenolic compounds in beans. Mutat Res 441(1):1–9Google Scholar
  28. de Oliveira AC, Queiroz KS, Helbig E, Reis SM, Carraro F (2001) The domestic processing of the common bean resulted in a reduction in the phytates and tannins antinutritional factors, in the starch content and in the raffinose, stachiose and verbascose flatulence factors. Arch Latinoam Nutr 51(3):276–283, In PortugueseGoogle Scholar
  29. Deng J, Liao X, Hu J, Leng X, Cheng J, Zhao G (2010) Purification and characterization of new phytoferritin from black bean (Phaseolus vulgaris L.) seed. J Biochem 147(5):679–688Google Scholar
  30. Díaz AM, Caldas GV, Blair MW (2010) Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Res Int 43(2):595–601Google Scholar
  31. Dong M, He X, Liu RH (2007) Phytochemicals of black bean seed coats: isolation, structure elucidation, and their antiproliferative and antioxidative activities. J Agric Food Chem 55(15):6044–6051Google Scholar
  32. Fang EF, Lin P, Wong JH, Tsao SW, Ng TB (2010) A lectin with anti-HIV-1 reverse transcriptase, antitumor, and nitric oxide inducing activities from seeds of Phaseolus vulgaris cv. extralong autumn purple bean. J Agric Food Chem 58(4):2221–2229Google Scholar
  33. Fantini N, Cabras C, Lobina C, Colombo G, Gessa GL, Riva A, Donzelli F, Morazzoni P, Bombardelli E, Carai MA (2009) Reducing effect of a Phaseolus vulgaris dry extract on food intake, body weight, and glycemia in rats. J Agric Food Chem 57(19):9316–9323Google Scholar
  34. Finley JW, Burrell JB, Reeves PG (2007) Pinto bean consumption changes SCFA profiles in fecal fermentations, bacterial populations of the lower bowel, and lipid profiles in blood of humans. J Nutr 137(11):2391–2398Google Scholar
  35. Gallegos-Infante JA, Bello-Perez LA, Rocha-Guzman NE, Gonzalez-Laredo RF, Avila-Ontiveros M (2010) Effect of the addition of common bean (Phaseolus vulgaris L.) flour on the in vitro digestibility of starch and undigestible carbohydrates in spaghetti. J Food Sci 75(5):H151–H156Google Scholar
  36. Geil P, Anderson J (1994) Nutrition and health implications of dry beans: a review. J Am Coll Nutr 13(6):549–558Google Scholar
  37. Gentry HS (1969) Origin of the common bean, Phaseolus vulgaris. Econ Bot 23:55–69Google Scholar
  38. Gepts P, Dpbouk D (1991) Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). In: Van Schoonhoven A, Voyset O (eds.) Common beans: Research for crop improvement. CAB International, Wallingford, pp 7–53Google Scholar
  39. Golam Masum Akond ASM, Khandaker L, Berthold J, Gates L, Peters K, Delong H, Hossain K (2011) Anthocyanin, total polyphenols and antioxidant activity of common bean. Am J Food Technol 6:385–394Google Scholar
  40. Granito M, Valero Y, Zambrano R (2010) Baked product development based fermented legumes and cereals for schoolchildren snack. Arch Latinoam Nutr 60(1):85–92, in SpanishGoogle Scholar
  41. Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Prior RL (2003a) Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thyolitic degradation. J Agric Food Chem 51(25):7513–7521Google Scholar
  42. Gu L, Kelm MA, Hammerstone JF, Zhang Z, Beecher G, Holden J, Haytowitz D, Prior RL (2003b) Liquid chromatographic/electrospray ionization mass spectrometric studies of proanthocyanidins in foods. J Mass Spectrom 38(12):1272–1280Google Scholar
  43. Hague A, Paraskeva C (1995) The short-chain fatty acid butyrate induces apoptosis in colorectal tumour cell lines. Eur J Cancer Prev 4:359–364Google Scholar
  44. Hangen L, Bennink M (2002) Consumption of black beans and navy beans (P. vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutr Cancer 44:60–65Google Scholar
  45. Heimler D, Vignolini P, Dini M, Romani A (2005) Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. dry beans. J Agric Food Chem 53:3053–3056Google Scholar
  46. Helbig E, de Oliveira AC, Queiroz Kda S, Reis SM (2003) Effect of soaking prior to cooking on the levels of phytate and tannin of the common bean (Phaseolus vulgaris, L.) and the protein value. J Nutr Sci Vitaminol (Tokyo) 49(2):81–86Google Scholar
  47. Helmstädter A (2010) Beans and diabetes: Phaseolus vulgaris preparations as antihyperglycemic agents. J Med Food 13(2):251–254Google Scholar
  48. Hempel J, Bohm H (1996) Quality and quantity of prevailing flavonoid glycosides of yellow and green French bean. J Agric Food Chem 44(8):2114–2116Google Scholar
  49. Henningson A, Nyman E, Bjorck I (2001) Content of short-chain fatty acids in the hindgut of rats fed processed bean (Phaseolus vulgaris) flours varying in distribution and content of indigestible carbohydrates. Br J Nutr 86(3):379–389Google Scholar
  50. Herzig KH, Bardocz S, Grant G, Nustede R, Fölsch UR, Pusztai A (1997) Red kidney bean lectin is a potent cholecystokinin releasing stimulus in the rat inducing pancreatic growth. Gut 41(3):333–338Google Scholar
  51. Hou Y, Hou Y, Yanyan L, Qin G, Li J (2010) Extraction and purification of a lectin from red kidney bean and preliminary immune function studies of the lectin and four Chinese herbal polysaccharides. J Biomed Biotechnol 2010:217342Google Scholar
  52. Hughes JS, Ganthavorn C, Wilson-Sanders S (1997) Dry beans inhibit azoxymethane-induced colon carcinogenesis in F344 rats. J Nutr 127(12):2328–2333Google Scholar
  53. Kalogeropoulos N, Chiou A, Ioannou M, Hassapidou M, Karathanos VT, Adrikopoulos NK (2010) Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem 121(3):682–690Google Scholar
  54. Koukiekolo R, Le Berre-Anton V, Desseaux V, Moreau Y, Rougé P, Marchis-Mouren G, Santimone M (1999) Mechanism of porcine pancreatic alpha-amylase inhibition of amylose and maltopentaose hydrolysis by kidney bean (Phaseolus vulgaris) inhibitor and ­comparison with that by acarbose. Eur J Biochem 265(1):20–26Google Scholar
  55. Lam SK, Ng TB (2010a) First report of a haemagglutinin-induced apoptotic pathway in breast cancer cells. Biosci Rep 30(5):307–317Google Scholar
  56. Lam SK, Ng TB (2010b) Isolation and characterization of a French bean hemagglutinin with antitumor, antifungal, and anti-HIV-1 reverse transcriptase activities and an exceptionally high yield. Phytomedicine 17(6):457–462Google Scholar
  57. Lee YK, Hwang JT, Lee MS, Kim YM, Park OJ (2009) Kidney bean husk extracts exert antitumor effect by inducing apoptosis involving AMP-activated protein kinase signaling pathway. Ann NY Acad Sci 1171:484–488Google Scholar
  58. Leung EH, Wong JH, Ng TB (2008) Concurrent purification of two defense proteins from French bean seeds: a defensin-like antifungal peptide and a hemagglutinin. J Pept Sci 14(3):349–353Google Scholar
  59. Lin L, Harnly JM, Pastor Corrales MA, Luthria DL (2008) The polyphenolic profiles of common bean (Phaseolus vulgaris L.). J Food Chem 107:399–410Google Scholar
  60. Lin P, Wong JH, Ng TB (2009) A defensin with highly potent antipathogenic activities from the seeds of purple pole bean. Biosci Rep 30(2):101–109Google Scholar
  61. Lung’aho MG, Glahn RP (2010) Use of white beans instead of red beans may improve iron bioavailability from a Tanzanian complementary food mixture. Int J Vitam Nutr Res 80(1):24–31Google Scholar
  62. Martín-Cabrejas MA, Jaime L, Karanja C, Downie AJ, Parker ML, Lopez-Andreu FJ, Maina G, Esteban RM, Smith AC, Waldron KW (1999) Modifications to physicochemical and nutritional properties of hard-To-cook beans (Phaseolus vulgaris L.) by extrusion cooking. J Agric Food Chem 47(3):1174–1182Google Scholar
  63. Martín-Cabrejas MA, Sanfiz B, Vidal A, Mollá E, Esteban R, López-Andréu FJ (2004) Effect of fermentation and autoclaving on dietary fiber fractions and antinutritional factors of beans (Phaseolus vulgaris L.). J Agric Food Chem 52(2):261–266Google Scholar
  64. Marzo F, Alonso R, Urdaneta E, Arricibita FJ, Ibáñez F (2002) Nutritional quality of extruded kidney bean (Phaseolus vulgaris L. var. Pinto) and its effects on growth and skeletal muscle nitrogen fractions in rats. J Anim Sci 80(4):875–879Google Scholar
  65. Messiaen C-M, Seif AA (2004) Phaseolus vulgaris L. (French bean) [Internet] Record from Protabase. In: Grubben GJH, Denton OA (eds.) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique ­tropicale), Wageningen, Netherlands. http://database.prota.org/search.htm
  66. Ministry of Agriculture, Forestry & Fisheries Genebank, Japan (1998). The Illustrated Legume Genetic Resources Database. http://www.gene.affrc.go.jp/plant/image/index.html
  67. Montoya CA, Leterme P, Romé V, Beebe S, Claustre J, Lallès JP (2010) Phaseolin from Phaseolus vulgaris bean modulates gut mucin flow and gene expression in rats. Br J Nutr 104(12):1740–1747Google Scholar
  68. Murakami C, Myoga K, Kasai R, Ohtani K, Kurokawa T, Ishibashi S, Dayrit F, Padolina WG, Yamasaki K (1993) Screening of plant constituents for effect on glucose transport activity in Ehrlich ascites tumour cells. Chem Pharm Bull (Tokyo) 41(12):2129–31.Google Scholar
  69. Ng TB, Au TK, Lam TL, Ye XY, Wan DC (2002) Inhibitory effects of antifungal proteins on human immunodeficiency virus type 1 reverse transcriptase, protease and integrase. Life Sci 70(8):927–935Google Scholar
  70. Nguyen KA, Cao Y, Chen JR, Townsend CM Jr, Ko TC (2006) Dietary fiber enhances a tumor suppressor signaling pathway in the gut. Ann Surg 243:619–627Google Scholar
  71. Ocho-Anin Atchibri AL, Brou KD, Kouakou TH, Kouadio YJ, Gnakri D (2010b) Screening for antidiabetic activity and phytochemical constituents of common bean (Phaseolus vulgaris L.) seeds. J Med Plants Res 4(17):1757–1761Google Scholar
  72. Obiro WC, Zhang T, Jiang B (2008) The nutraceutical role of the Phaseolus vulgaris alpha-amylase inhibitor. Br J Nutr 100(1):1–12Google Scholar
  73. Ocho-Anin Atchibri AL, Kouakou TH, Brou KD, Kouadio YJ, Gnakri D (2010a) Evaluation of bioactive components in seeds of Phaseolus vulgaris L. (Fabaceae) cultivated in Côte d’Ivoire. J Appl Biosci 31:1928–1934Google Scholar
  74. Oomah BD, Corbé A, Balasubramanian P (2010) Antioxidant and anti-inflammatory activities of bean (Phaseolus vulgaris L.) hulls. J Agric Food Chem 58(14):8225–8230Google Scholar
  75. Oomah BD, Liang LS, Balasubramanian P (2007) Volatile compounds of dry beans (Phaseolus vulgaris L.). Plant Foods Hum Nutr 62(4):177–183Google Scholar
  76. Pari L, Venkateswaran S (2004) Protective role of Phaseolus vulgaris on changes in the fatty acid composition in experimental diabetes. J Med Food 7(2):204–209Google Scholar
  77. Pastorello EA, Pravettoni V, Farioli L, Primavesi L, Scibilia J, Piantanida M, Mascheri A, Conti A (2010) Green bean (Phaseolus vulgaris): a new source of IgE-binding lipid transfer protein. J Agric Food Chem 58(7):4513–4516Google Scholar
  78. Porcher MH et al. (1995 – 2020) Searchable World Wide Web Multilingual Multiscript Plant Name Database, Published by The University of Melbourne, Australia. http://www.plantnames.unimelb.edu.au/Sorting/Frontpage.html
  79. Pryme IF, Bardocz S (2001) Anti-cancer therapy: Diversion of polyamines in the gut. Eur J Gastroenterol Hepatol 13(9):1041–1046Google Scholar
  80. Pryme IF, Bardocz S, Pusztai A, Ewen SW (1999a) The growth of an established murine non-Hodgkin lymphoma tumour is limited by switching to a phytohaemagglutinin-containing diet. Cancer Lett 146(1):87–91Google Scholar
  81. Pryme IF, Pusztai AJ, Bardocz S (1994) A diet containing the lectin phytohaemagglutinin (PHA) slows down the proliferation of Krebs II cell tumours in mice. Cancer Lett 76(2–3):133–137Google Scholar
  82. Pryme IF, Pusztai A, Bardocz S, Ewen SW (1999b) A combination of dietary protein depletion and PHA-induced gut growth reduce the mass of a murine non-Hodgkin lymphoma. Cancer Lett 139(2):145–152Google Scholar
  83. Pryme IF, Pusztai AJ, Grant G, Bardocz S (1996a) Dietary phytohaemagglutinin slows down the proliferation of a mouse plasmacytoma (MPC-11) tumour in Balb/c mice. Cancer Lett 103(2):151–155Google Scholar
  84. Pryme IF, Pusztai AJ, Grant G, Bardocz S (1996b) Phytohemagglutinin-induced gut hyperplasia and the growth of a mouse lymphosarcoma tumor. J Exp Ther Oncol 1(3):171–176Google Scholar
  85. Pryme IF, Pusztai A, Bardocz S, Ewen SW (1998) The induction of gut hyperplasia by PHA in the diet and limitation of tumour growth. Histol Histopathol 13:575–583Google Scholar
  86. Purseglove JW (1968) Tropical crops: Dicotyledons, vol 1 & 2. Longman, London, 719 ppGoogle Scholar
  87. Ranilla LG, Genovese MI, Lajolo FM (2007) Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and Peruvian bean cultivars (Phaseolus vulgaris L.). J Agric Food Chem 55(1):90–98Google Scholar
  88. Ranilla LG, Genovese MI, Lajolo FM (2009) Effect of different cooking conditions on phenolic compounds and antioxidant capacity of some selected Brazilian bean (Phaseolus vulgaris L.) cultivars. J Agric Food Chem 57(13):5734–5742Google Scholar
  89. Raponda-Walker A, Sillans R (1995). Les Plantes Utiles du Gabon. Encyclopédie Biologique. Editions Sepia pp 697 (First Published 1961)Google Scholar
  90. Reynoso-Camacho R, Ramos-Gomez M, Loarca-Pina G (2006) Bioactive components in common beans (Phaseolus vulgaris L.). In: Guevara-González RG, Torres-Pacheco I (eds.) Advances in agricultural and food biotechnology. Research Signpost, Trivandrum, pp 217–236Google Scholar
  91. Rubaihayo EB (1997). Conservation and use of traditional vegetables in Uganda. In: Guarino L (ed.) Traditional African vegetables. Promoting the conservation and use of underutilized and neglected crops. vol 16. Proceedings of the IPGRI international workshop on genetic resources of traditional vegetables in Africa: conservation and use, ICRAF-HQ, Nairobi, Kenya. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy, 29–31 Aug 1995Google Scholar
  92. Santimone M, Koukiekolo R, Moreau Y, Le Berre V, Rougé P, Marchis-Mouren G, Desseaux V (2004) Porcine pancreatic alpha-amylase inhibition by the kidney bean (Phaseolus vulgaris) inhibitor (alpha-AI1) and structural changes in the alpha-amylase inhibitor complex. Biochim Biophys Acta 1696(2):181–190Google Scholar
  93. Sayeed S, Njaa LR (1985) Effect of a Bangladeshi home-cooking procedure on the amino acid content, trypsin inhibitor activity and in vitro digestibility of some legume seeds. Plant Foods Hum Nutr 35:379–388Google Scholar
  94. Serrano J, Goñi I (2004) Role of black bean Phaseolus vulgaris on the nutritional status of Guatemalan population. Arch Latinoam Nutr 54(1):36–44, In SpanishGoogle Scholar
  95. Sharma A, Ng TB, Wong JH, Lin P (2009) Purification and characterization of a lectin from Phaseolus vulgaris cv. (Anasazi beans). J Biomed Biotechnol, 2009:929568Google Scholar
  96. Sharma A, Wong JH, Lin P, Chan YS, Ng TB (2010) Purification and characterization of a lectin from the Indian cultivar of French bean seeds. Protein Pept Lett 17(2):221–227Google Scholar
  97. Shimelis EA, Rakshit SK (2005) Antinutritional factors and in vitro protein digestibility of improved haricot bean (Phaseolus vulgaris L.) varieties grown in Ethiopia. Int J Food Sci Nutr 56(6):377–387Google Scholar
  98. Shirke SS, Jadhav SR, Jagtap AG (2009) Osteoprotective effect of Phaseolus vulgaris L in ovariectomy-induced osteopenia in rats. Menopause 16(3):589–596Google Scholar
  99. Shutler SM, Bircher GM, Tredger JA, Morgan LM, Walker AF, Low AG (1989) The effect of daily baked bean (Phaseolus vulgaris) consumption on the plasma lipid levels of young, normo-cholesterolaemic men. Br J Nutr 61:257–265Google Scholar
  100. Siavoshian S, Segain JP, Kornprobst M, Bonnet C, Cherbut C, Galmiche JP, Blottiere HM (2000) Butyrate and trichostatin A effects on the proliferation/ differentiation of human intestinal epithelial cells: induction of cyclin D3 and p21 expression. Gut 46:507–514Google Scholar
  101. Smartt J (1989) Phaseolus vulgaris L. In: van der Maesen LJG, Somaatmadja S (eds.) Plant resources of South-East Asia No 1. Pulses. Pudoc, Wageningen, pp 60–63Google Scholar
  102. Smartt J (1990) Grain legumes: Evolution and genetic resources. Cambridge University Press, Cambridge, 379 ppCrossRefGoogle Scholar
  103. Sotelo A, Sousa H, Sánchez M (1995) Comparative study of the chemical composition of wild and cultivated beans (Phaseolus vulgaris). Plant Foods Hum Nutr 47(2):93–100Google Scholar
  104. Sun J, Wang H, Ng TB (2010) Trypsin isoinhibitors with antiproliferative activity toward leukemia cells from Phaseolus vulgaris cv “White Cloud Bean”. J Biomed Biotechnol 2010:219793Google Scholar
  105. Thompson MD, Brick MA, McGinley JN, Thompson HJ (2009) Chemical composition and mammary cancer inhibitory activity of dry bean. Crop Sci 49(1):179–186Google Scholar
  106. Thompson MD, Thompson HJ, Brick MA, McGinley JN, Jiang W, Zhu Z, Wolfe P (2008) Mechanisms associated with dose-dependent inhibition of rat mammary carcinogenesis by dry bean (Phaseolus vulgaris L.). J Nutr 138(11):2091–2097Google Scholar
  107. Tormo MA, Gil-Exojo I, Romero de Tejada A, Campillo JE (2004) Hypoglycemic and anorexigenic activities of an alpha amylase inhibitor from white kidney beans (Phaseolus vulgaris) in wistar rats. Br J Nutr 92(5):785–790Google Scholar
  108. Tormo MA, Gil-Exojo I, Romero de Tejada A, Campillo JE (2006) White bean amylase inhibitor administered orally reduces glycaemia in type 2 diabetic rats. Br J Nutr 96(3):539–544Google Scholar
  109. Torruco-Uco J, Chel-Guerrero L, Martínez-Ayala A, Dávila-Ortíz G, Betancur-Ancona D (2009) Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris seeds. LWT Food Sci Technol 42(10):1597–1604Google Scholar
  110. Tsuda T, Ohshima K, Kawakishi S, Osawa T (1994) Antioxidative pigments isolated from the seeds of Phaseolus vulgaris L. J Agric Food Chem 42(2):248–251Google Scholar
  111. Udani J, Singh BB (2007) Blocking carbohydrate absorption and weight loss: a clinical trial using a proprietary fractionated white bean extract. Altern Ther Health Med 13(4):32–37Google Scholar
  112. Udani JK, Singh BB, Barrett ML, Preuss HG (2009) Lowering the glycemic index of white bread using a white bean extract. Nutr J 8:52Google Scholar
  113. Venkateswaran S, Pari L, Saravanan G (2002) Effect of Phaseolus vulgaris on circulatory antioxidants and lipids in rats with streptozotocin-induced diabetes. J Med Food 5(2):97–103Google Scholar
  114. Verdcourt B (1970) Studies in the Leguminosae - Papilionoideae for the “Flora of Tropical East Africa”: IV. Kew Bull 24:542–544Google Scholar
  115. U.S. Department of Agriculture, Agricultural Research Service (2010) USDA National Nutrient Database for Standard Reference, Release 23. Nutrient Data Laboratory Home Page, http://www.ars.usda.gov/ba/bhnrc/ndl
  116. Wang HX, Ng TB (2001) Examination of lectins, polysaccharo­peptide, polysaccharide, alkaloid, coumarin and trypsin inhibi­tors for inhibitory activity against human immunodeficiency virus reverse transcriptase and glycohydrolases. Planta Med 67(7):669–672Google Scholar
  117. Wong JH, Wong CC, Ng TB (2006) Purification and characterization of a galactose-specific lectin with mitogenic activity from pinto beans. Biochim Biophys Acta 1760(5):808–813Google Scholar
  118. Wang HX, Ng TB (2007) Isolation and characterization of an antifungal peptide with antiproliferative activity from seeds of Phaseolus vulgaris cv. ‘Spotted Bean’. Appl Microbiol Biotechnol 74(1):125–130Google Scholar
  119. Weder JK, Telek L, Vozári-Hampe M, Saini HS (1997) Antinutritional factors in anasazi and other pinto beans (Phaseolus vulgaris L.). Plant Foods Hum Nutr 51(2):85–98Google Scholar
  120. Winham DM, Hutchins AM (2007) Baked bean consumption reduces serum cholesterol in hypercholesterolemic adults. Nutr Res 27(7):380–386Google Scholar
  121. Wong JH, Wan CT, Ng TB (2010) Characterisation of a haemagglutinin from Hokkaido red bean (Phaseolus vulgaris cv. Hokkaido red bean). J Sci Food Agric 90(1):70–77Google Scholar
  122. Wortmann CS (2006) Phaseolus vulgaris L. (common bean) [Internet] Record from Protabase. In: Brink M, Belay G (eds.) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands. < http://database.prota.org/search.htm>
  123. Wu D, Thulin M (2010) Phaseolus Linnaeus. In: Wu ZY, Raven PH, Hong DY (eds.) Flora of China, vol 10, Fabaceae. Science Press/Missouri Botanical Garden Press, Beijing/St. LouisGoogle Scholar
  124. Wu X, Sun J, Zhang G, Wang H, Ng TB (2011) An antifungal defensin from Phaseolus vulgaris cv. ‘Cloud Bean’. Phytomedicine 18(2-3):104–109Google Scholar
  125. Wu XL, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2004) Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 52(12):4026–4037Google Scholar
  126. Xia L, Ng TB (2005) An antifungal protein from flageolet beans. Peptides 26(12):2397–2403Google Scholar
  127. Xia L, Ng TB (2006) A hemagglutinin with mitogenic activity from dark red kidney beans. J Chromatogr B Analyt Technol Biomed Life Sci 844(2):213–216Google Scholar
  128. Xu BJ, Chang SK (2008) Total phenolic content and antioxidant properties of eclipse black beans (Phaseolus vulgaris L.) as affected by processing methods. J Food Sci 73(2):H19–H27Google Scholar
  129. Xu BJ, Chang SK (2009) Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as Affected by Thermal Processing. J Agric Food Chem 57(11):4754–4764Google Scholar
  130. Yin SW, Tang CH, Wen QB, Yang XQ (2009) Effects of acylation on the functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate. J Food Sci 74(9):E488–E494Google Scholar
  131. Yin SW, Tang CH, Wen QB, Yang XQ (2010) Functional and conformational properties of phaseolin (Phaseolus vulgris L.) and kidney bean protein isolate: a comparative study. J Sci Food Agric 90(4):599–607Google Scholar
  132. Yin SW, Tang CH, Wen QB, Yang XQ (2011) Conformational and thermal properties of phaseolin, the major storage protein of red kidney bean (Phaseolus vulgaris L.). J Sci Food Agric 91(1):94–99Google Scholar
  133. Yoon SJ, Park SY, Pang PC, Gallagher J, Gottesman JE, Dell A, Kim JH, Hakomori SI (2010) N-glycosylation status of beta-haptoglobin in sera of patients with prostate cancer vs. benign prostate diseases. Int J Oncol 36(1):193–203Google Scholar
  134. Zhang XQ, Yang MY, Ma Y, Tian J, Song JR (2007) Isolation and activity of an alpha-amylase inhibitor from white kidney beans. Yao Xue Xue Bao 42(12):1282–1287Google Scholar
  135. Zhang Y, Zhou L, Bao YL, Wu Y, Yu CL, Huang YX, Sun Y, Zheng LH, Li YX (2010) Butyrate induces cell apoptosis through activation of JNK MAP kinase pathway in human colon cancer RKO cells. Chem Biol Interact 185(3):174–181Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • T. K. Lim
    • 1
  1. 1.ChisholmAustralia

Personalised recommendations