Glycine max

  • T. K. Lim
Chapter

Abstract

Dolichos sofa Linn., Glycine angustifolia Miq., Glycine gracilis Skvortsov, Glycine hispida (Moench.) Maxim., Glycine hispida var. brunnea Skvortsov, Glycine hispida var. lutea Skvortsov, Glycine soja (L.) Merr., Phaseolus max Linn. (basionym), Phaseolus sordidus Salisb., Soja angustifolia Miquel, Soja hispida Moench., Soja japonica Savi, Soja max (L.) Piper, Soja soja Karst., Soja viridis Savi.

Selected References

  1. Adams MR, Golden DL, Franke AA, Potter SM, Smith HS, Anthony MS (2004) Dietary soy beta-conglycinin (7S globulin) inhibits atherosclerosis in mice. J Nutr 134(3):511–516Google Scholar
  2. Ahmad IU, Forman JD, Sarkar FH, Hillman GG, Heath E, Vaishampayan U, Cher ML, Andic F, Rossi PJ, Kucuk O (2010) Soy isoflavones in conjunction with radiation therapy in patients with prostate cancer. Nutr Cancer 62(7):996–1000Google Scholar
  3. Akihisa T, Kimura Y, Tamura T (1994) Bacchara-12,21-dien-3β-ol from the seeds of Glycine max. Phytochemistry 37(5):1413–1415Google Scholar
  4. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262:5592–5595Google Scholar
  5. Albert A, Altabre C, Baró F, Buendía E, Cabero A, Cancelo MJ, Castelo-Branco C, Chantre P, Duran M, Haya J, Imbert P, Julía D, Lanchares JL, Llaneza P, Manubens M, Miñano A, Quereda F, Ribes C, Vázquez F (2002) Efficacy and safety of a phytoestrogen preparation derived from (L.) Merr in climacteric symptomatology: a multicentric, open, prospective and non-randomized trial. Phytomedicine 9(2):85–92Google Scholar
  6. Alekel DL, Van Loan MD, Koehler KJ, Hanson LN, Stewart JW, Hanson KB, Kurzer MS, Peterson CT (2010) The soy isoflavones for reducing bone loss (SIRBL) study: a 3-y randomized controlled trial in postmenopausal women. Am J Clin Nutr 91(1):218–230Google Scholar
  7. Ali Z, Khan SI, Khan IA (2009) Soyasaponin Bh, a triterpene saponin containing a unique hemiacetal-functional five-membered ring from Glycine max (soybeans). Planta Med 75(4):371–374Google Scholar
  8. Anderson JW (2008) Beneficial effects of soy protein consumption for renal function. Asia Pac J Clin Nutr 17(S1):324–328Google Scholar
  9. Andres A, Donovan SM, Kuhlenschmidt MS (2009) Soy isoflavones and virus infections. J Nutr Biochem 20(8):563–569Google Scholar
  10. Anonymous (1986) Tofu standards. Recommended by the Standards Committee and approved by the Board of Directors and Members of the Soyfoods Association of America, pp 18Google Scholar
  11. Anta L, Luisa Marina M, García MC (2010) Simultaneous and rapid determination of the anticarcinogenic proteins Bowman-Birk inhibitor and lectin in soybean crops by perfusion RP-HPLC. J Chromatogr A 1217(45):7138–7143Google Scholar
  12. Ascencio C, Torres N, Isoard-Acosta F, Gómez-Pérez FJ, Hernández-Pando R, Tovar AR (2004) Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. J Nutr 134(3):522–529Google Scholar
  13. Aukema HM, Housini I (2001) Dietary soy protein effects on disease and IGF-I in male and female Han:SPRD-cy rats. Kidney Int 59(1):52–61Google Scholar
  14. Azadbakht L, Atabak S, Esmaillzadeh A (2008) Soy protein intake, cardiorenal indices, and C-reactive protein in type 2 diabetes with nephropathy: a longitudinal randomized clinical trial. Diabetes Care 31(4):648–654Google Scholar
  15. Azadbakht L, Esmaillzadeh A (2009) Soy-protein consumption and kidney-related biomarkers among type 2 diabetics: a crossover, randomized clinical trial. J Ren Nutr 19(6):479–486Google Scholar
  16. Azadbakht L, Shakerhosseini R, Atabak S, Jamshidian M, Mehrabi Y, Esmaill-Zadeh A (2003) Beneficiary effect of dietary soy protein on lowering plasma levels of lipid and improving kidney function in type II diabetes with nephropathy. Eur J Clin Nutr 57(10):1292–1294Google Scholar
  17. Azevedo L, Dragano NR, Sabino AP, Resck MC, de Lima PL, Gouvêa CM (2010) In vivo antimutagenic properties of transgenic and conventional soybeans. J Med Food 13(6):1402–1408Google Scholar
  18. Bahr JM, Nakai M, Rivera A, Walsh J, Evans GL, Lotinun S, Turner RT, Black M, Jeffery EH (2005) Dietary soy protein and isoflavones: minimal beneficial effects on bone and no effect on the reproductive tract of sexually mature ovariectomized Sprague-Dawley rats. Menopause 12(2):165–173Google Scholar
  19. Bardocz S, Grant G, Franklin MF, A de Carvalho FFU, Pusztai A (1996) The effect of phytohaemagglutinin at different dietary concentrations on the growth, body composition and plasma insulin of the rat. Br J Nutr 76:613–626Google Scholar
  20. Barnes S (1997) The chemopreventive properties of soy isoflavonoids in animal models of breast cancer. Breast Cancer Res Treat 46:169–179Google Scholar
  21. Barnes S (2010) The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat Res Biol 8(1):89–98Google Scholar
  22. Beavers KM, Serra MC, Beavers DP, Cooke MB, Willoughby DS (2010a) Soy and the exercise-induced inflammatory response in postmenopausal women. Appl Physiol Nutr Metab 35(3):261–269Google Scholar
  23. Beavers KM, Serra MC, Beavers DP, Hudson GM, Willoughby DS (2010b) The lipid-lowering effects of 4 weeks of daily soymilk or dairy milk ingestion in a postmenopausal female population. J Med Food 13(3):650–656Google Scholar
  24. Berk Z (1992) Technology of production of edible flours and protein products from soybeans. FAO Agricultural Services Bulletin 97. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  25. Beuchat LR (1995) Indigenous Fermented Foods. In: Reed G, Nagodawithana TW (eds) Biotechnology: (Vol 9) enzymes, biomass, food and feed. VCH Press, Weinheim/New York/Basel/Cambridge/Tokyo, pp 523–525Google Scholar
  26. Blum A, Lang N, Peleg A, Vigder F, Israeli P, Gumanovsky M, Lupovitz S, Elgazi A, Ben-Ami M (2003) Effects of oral soy protein on markers of inflammation in postmenopausal women with mild hypercholesterolemia. Am Heart J 145:e7Google Scholar
  27. Bolaños R, Del Castillo A, Francia J (2010) Soy isoflavones versus placebo in the treatment of climacteric vasomotor symptoms: systematic review and meta-analysis. Menopause 17(3):660–666Google Scholar
  28. Bolca S, Urpi-Sarda M, Blondeel P, Roche N, Vanhaecke L, Possemiers S, Al-Maharik N, Botting N, De Keukeleire D, Bracke M, Heyerick A, Manach C, Depypere H (2010) Disposition of soy isoflavones in normal human breast tissue. Am J Clin Nutr 91(4):976–984Google Scholar
  29. Boué SM, Tilghman SL, Elliott S, Zimmerman MC, Williams KY, Payton-Stewart F, Miraflor AP, Howell MH, Shih BY, Carter-Wientjes CH, Segar C, Beckman BS, Wiese TE, Cleveland TE, McLachlan JA, Burow ME (2009) Identification of the potent phytoestrogen glycinol in elicited soybean (Glycine max). Endocrinol 150(5):2446–2453Google Scholar
  30. Boué SM, Wiese TE, Nehls S, Burow ME, Elliott S, Carter-Wientjes CH, Shih BY, McLachlan JA, Cleveland TE (2003) Evaluation of the estrogenic effects of legume extracts containing phytoestrogens. J Agric Food Chem 51(8):2193–2199Google Scholar
  31. Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourié B, Brouns F, Bornet FR (2004) The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomised, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr 80:1658–1664Google Scholar
  32. Branca F (2003) Dietary phyto-oestrogens and bone health. Proc Nutr Soc 62(4):877–887Google Scholar
  33. Breitman PL, Fonseca D, Ward WE (2005) Combination of soy protein and high dietary calcium on bone biomechanics and bone mineral density in ovariectomized rats. Menopause 12(4):428–435Google Scholar
  34. Brink E, Coxam V, Robins S, Wahala K, Y Cassid A, Branca F, 38 PHYTOS Investigators (2008) Long-term consumption of isoflavone-enriched foods does not affect bone mineral density, bone metabolism, or hormonal status in early postmenopausal women: a randomized, double-blind, placebo controlled study. Am J Clin Nutr 87(3):761–770Google Scholar
  35. Brown NM, Belles CA, Lindley SL, Zimmer-Nechemias L, Witte DP, Kim MO, Setchell KD (2010) Mammary gland differentiation by early life exposure to enantiomers of the soy isoflavone metabolite equol. Food Chem Toxicol 48(11):3042–3050Google Scholar
  36. Bu L, Setchell KD, Lephart ED (2005) Influences of dietary soy isoflavones on metabolism but not nociception and stress hormone responses in ovariectomized female rats. Reprod Biol Endocrinol 3:58Google Scholar
  37. Burke GL, Legault C, Anthony M, Bland DR, Morgan TM, Naughton MJ, Leggett K, Washburn SA, Vitolins MZ (2003) Soy protein and isoflavone effects on vasomotor symptoms in peri- and postmenopausal women: the Soy Estrogen Alternative Study. Menopause 10(2):147–153Google Scholar
  38. Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula. Revised reprint. 2 vols. Ministry of Agriculture and Co-operatives, Kuala Lumpur. Vol. 1(A-H), pp. 1–1240; Vol. 2(I-Z), pp. 1241–2444Google Scholar
  39. Burow ME, Boue SM, Collins-Burow BM, Melnik LI, Duong BN, Carter-Wientjes CH, Li S, Wiese TE, Cleveland TE, McLachlan JA (2001) Phytochemical glyceollins, isolated from soy, mediate antihormonal effects through estrogen receptor alpha and beta. J Clin Endocrinol Metab 86(4):1750–1758Google Scholar
  40. Butler LM, Wu AH, Wang R, Koh WP, Yuan JM, Yu MC (2010) A vegetable-fruit-soy dietary pattern protects against breast cancer among postmenopausal Singapore Chinese women. Am J Clin Nutr 91(4):1013–1019Google Scholar
  41. Byun JS, Han YS, Lee SS (2010) The effects of yellow soybean, black soybean, and sword bean on lipid levels and oxidative stress in ovariectomized rats. Int J Vitam Nutr Res 80(2):97–106Google Scholar
  42. Byun JS, Lee SS (2010) Effect of soybeans and sword beans on bone metabolism in a rat model of osteoporosis. Ann Nutr Metab 56(2):106–112Google Scholar
  43. Campbell SC, Khalil DA, Payton ME, Arjmandi BH (2010) One-year soy protein supplementation does not improve lipid profile in postmenopausal women. Menopause 17(3):587–593Google Scholar
  44. Cancelo HMJ, Castelo BC (2010) Optimizing soy isoflavones effect in postmenopausal women: the impact of timing on climacteric symptoms. Gynecol Endocrinol 27(9):696–700Google Scholar
  45. Carroll KK, Kurowska EM (1995) Soy consumption and cholesterol reduction: review of animal and human studies. J Nutr 125(3 Suppl):594S–597SGoogle Scholar
  46. Cavallini DC, Abdalla DS, Vendramini RC, Bedani R, Bomdespacho LQ, Pauly-Silveira ND, de Valdez GF, Rossi EA (2009) Effects of isoflavone-supplemented soy yogurt on lipid parameters and atherosclerosis development in hypercholesterolemic rabbits: a randomized double-blind study. Lipids Health Dis 8:40Google Scholar
  47. Chan YC, Wu CC, Chan KC, Lin YG, Liao JW, Wang MF, Chang YH, Jeng KC (2009) Nanonized black soybean enhances immune response in senescence-accelerated mice. Int J Nanomedicine 4:27–35Google Scholar
  48. Chang HC, Doerge DR (2000) Dietary genistein inactivates rat thyroid peroxidase in vivo without an apparent hypothyroid effect. Toxicol Appl Pharmacol 168(3):244–252Google Scholar
  49. Chen S, Fan J, Zhang X (2009) The moderating role of dark soy sauce to acrylamide-induced oxidative stress and neurophysiological perturbations in rats. Toxicol Mech Methods 19(6–7):434–440Google Scholar
  50. Cheng G, Wilczek B, Warner M, Gustafsson JA, Landgren BM (2007) Isoflavone treatment for acute menopausal symptoms. Menopause 14(3 Pt 1):468–473Google Scholar
  51. Cheng SY, Shaw NS, Tsai KS, Chen CY (2004) The hypoglycemic effects of soy isoflavones on postmenopausal women. J Womens Health (Larchmt) 13(10):1080–1086Google Scholar
  52. Chiu TM, Huang CC, Lin TJ, Fang JY, Wu NL, Hung CF (2009) In vitro and in vivo anti-photoaging effects of an isoflavone extract from soybean cake. J Ethnopharmacol 126(1):108–113Google Scholar
  53. Cho YA, Kim J, Park KS, Lim SY, Shin A, Sung MK, Ro J (2010) Effect of dietary soy intake on breast cancer risk according to menopause and hormone receptor status. Eur J Clin Nutr 64(9):924–932Google Scholar
  54. Choct M (1997) Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Mill Int:June 13–26Google Scholar
  55. Chung H, Hogan S, Zhang L, Rainey K, Zhou K (2008) Characterization and comparison of antioxidant properties and bioactive components of Virginia soybeans. J Agric Food Chem 56(23):11515–11519Google Scholar
  56. Chung HY (1999) Volatile compoenents in fermented soybean (Glycine max) curds. J Agric Food Chem 47(7):2690–2696Google Scholar
  57. Chung HY, Fung PK, Kim JS (2005) Aroma impact components in commercial plain sufu. J Agric Food Chem 53(5):1684–1691Google Scholar
  58. Clemente A, Moreno FJ, Marín-Manzano MC, Jiménez E, Domoney C (2010) The cytotoxic effect of Bowman-Birk isoinhibitors, IBB1 and IBBD2, from soybean (Glycine max) on HT29 human colorectal cancer cells is related to their intrinsic ability to inhibit serine proteases. Mol Nutr Food Res 54(3):396–405Google Scholar
  59. Colacurci N, Zarcone R, Borrelli A, De Franciscis P, Fortunato N, Cirillo M, Fornaro F (2004) Effects of soy isoflavones on menopausal neurovegetative symptoms. Minerva Ginecol 56(5):407–412Google Scholar
  60. Coxam V (2008) Phyto-oestrogens and bone health. Proc Nutr Soc 67(2):184–195Google Scholar
  61. Crouse JR 3rd, Morgan T, Terry JG, Ellis J, Vitolins M, Burke GL (1999) A randomized trial comparing the effect of casein with that of soy protein containing varying amounts of isoflavones on plasma concentrations of lipids and lipoproteins. Arch Intern Med 159(17):2070–2076Google Scholar
  62. Curran EM, Judy BM, Newton LG, Lubahn DB, Rottinghaus GE, Macdonald RS, Franklin C, Estes DM (2004) Dietary soy phytoestrogens and ERalpha signalling modulate interferon gamma production in response to bacterial infection. Clin Exp Immunol 135:219–225Google Scholar
  63. Cvejić J, Malencić D, Tepavcević V, Posa M, Miladinović J (2009) Determination of phytoestrogen composition in soybean cultivars in Serbia. Nat Prod Commun 4(8):1069–1074Google Scholar
  64. Czerwinski J, Leontowicz H, Leontowicz M, Gralak MA (2005) Response of rats to a moderate intake of soybean lectin. J Anim Feed Sci 14(Supplement 1):537–540Google Scholar
  65. Dave B, Eason RR, Renee Till S, Yan G, Velarde MC, Badger TM, Simmen RCM (2005) The soy isoflavone genistein promotes apoptosis in mammary epithelial cells by inducing the tumor suppressor PTEN. Carcinogenesis 26:793–1803Google Scholar
  66. De Leo F, Panarese S, Gallerani R, Ceci LR (2009) Angiotensin converting enzyme (ACE) inhibitory ­peptides: production and implementation of functional food. Curr Pharm Des 15(31):3622–3643Google Scholar
  67. de Mejia EG, Dia VP (2009) Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-kappaB pathway in the macrophage. Peptides 30(12):2388–2398Google Scholar
  68. de Mejia EG, Wang W, Dia VP (2010) Lunasin, with an ­arginine-glycine-aspartic acid motif, causes apoptosis to L1210 leukemia cells by activation of caspase-3. Mol Nutr Food Res 54(3):406–414Google Scholar
  69. der Kuil Altorf-van W, Engberink MF, Brink EJ, van Baak MA, Bakker SJ, Navis G, van ‘t Veer P, Geleijnse JM (2010) Dietary protein and blood pressure: a systematic review. PLoS ONE 5(8):e12102Google Scholar
  70. Devareddy L, Khalil DA, Korlagunta K, Hooshmand S, Bellmer DD, Arjmandi BH (2006a) The effects of fructo-oligosaccharides in combination with soy protein on bone in osteopenic ovariectomized rats. Menopause 13(4):692–699Google Scholar
  71. Devareddy L, Khalil DA, Smith BJ, Lucas EA, do Soung Y, Marlow DD, Arjmandi BH (2006b) Soy moderately improves microstructural properties without affecting bone mass in an ovariectomized rat model of osteoporosis. Bone 38(5):686–693Google Scholar
  72. Dia VP, Mejia EG (2010) Lunasin promotes apoptosis in human colon cancer cells by mitochondrial pathway activation and induction of nuclear clusterin expression. Cancer Lett 295(1):44–53Google Scholar
  73. Divi RL, Chang HC, Doerge DR (1997) Anti-thyroid isoflavones from soybean: isolation, characterization, and mechanisms of action. Biochem Pharmacol 54(10):1087–1096Google Scholar
  74. Doerge DR, Sheehan DM (2002) Goitrogenic and estrogenic activity of soy isoflavones. Environ Health Perspect 110(Suppl 3):349–353Google Scholar
  75. Dong JY, Qin LQ (2011) Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat 125(2):315–323Google Scholar
  76. Donovan SM, Andres A, Mathai RA, Kuhlenschmidt TB, Kuhlenschmidt MS (2009) Soy formula and isoflavones and the developing intestine. Nutr Rev 67(Suppl 2):S192–S200Google Scholar
  77. Duke JA (1981) Handbook of legumes of world economic importance. Plenum Press, New York/London, 345 ppGoogle Scholar
  78. Duke JA (1983) Handbook of energy crops. http://www.hort.purdue.edu/newcrop/duke_energy/dukeindex.html
  79. Ekor M, Emerole GO, Farombi EO (2010) Phenolic extract of soybean (Glycine max) attenuates cisplatin-induced nephrotoxicity in rats. Food Chem Toxicol 48(4):1005–1012Google Scholar
  80. Erdman JW Jr (2000) Soy protein and cardiovascular disease: a statement for healthcare professionals from the Nutrition Committee of the AHA. Circulation 102:2555–2559Google Scholar
  81. Espinosa-Martos I, Rupérez P (2006) Soybean oligosaccharides. Potential as new ingredients functional food. Nutr Hosp 21(1):92–96Google Scholar
  82. Fair DE, Ogborn MR, Weiler HA, Bankovic-Calic N, Nitschmann EP, Fitzpatrick-Wong SC, Aukema HM (2004) Dietary soy protein attenuates renal disease progression after 1 and 3 weeks in Han: SPRD-cy weanling rats. J Nutr 134(6):1504–1507Google Scholar
  83. Fang EF, Wong JH, Ng TB (2010a) Thermostable Kunitz trypsin inhibitor with cytokine inducing, antitumor and HIV-1 reverse transcriptase inhibitory activities from Korean large black soybeans. J Biosci Bioeng 109(3):211–217Google Scholar
  84. Fang EF, Wong JH, Lin P, Ng TB (2010b) Biochemical and functional properties of a lectin purified from Korean large black soybeans – a cultivar of Glycine max. Protein Pept Lett 17(6):690–698Google Scholar
  85. Farina HG, Pomies M, Alonso DF, Gomez DE (2006) Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncol Rep 16(4):885–891Google Scholar
  86. Faure ED, Chantre P, Mares P (2002) Effects of a standardized soy extract on hot flushes: a multicenter, double-blind, randomized, placebo-controlled study. Menopause 9(5):329–334Google Scholar
  87. Ferrari A (2009) Soy extract phytoestrogens with high dose of isoflavones for menopausal symptoms. J Obstet Gynaecol Res 35(6):1083–1090Google Scholar
  88. Friedman M, Levin CE, Noma AT (1984) Factors governing lysinoalanine formation in soy proteins. J Food Sci 49:1282–1288Google Scholar
  89. Fukutake M, Takahashi M, Ishida K, Kawamura H, Sugimura T, Wakabayashi K (1996) Quantification of genistein and genistin in soybeans and soybean products. Food Chem Toxicol 34(5):457–461Google Scholar
  90. Gallo D, Zannoni GF, De Stefano I, Mosca M, Ferlini C, Mantuano E, Scambia G (2008) Soy phytochemicals decrease nonsmall cell lung cancer growth in female athymic mice. J Nutr 138(7):1360–1364Google Scholar
  91. Gobert CP, Duncan AM (2009) Consumption, perceptions and knowledge of soy among adults with type 2 diabetes. J Am Coll Nutr 28(2):203–218Google Scholar
  92. Greiner LL, Stahly TS, Stabel TJ (2001) The effect of dietary soy genistein on pig growth and viral replication during a viral challenge. J Anim Sci 79(5):1272–1279Google Scholar
  93. Grossman CJ (1984) Regulation of the immune system by sex steroids. Endocrinol Rev 5:435–453Google Scholar
  94. Grün IU, Adhikari K, Li C, Li Y, Lin B, Zhang J, Fernando LN (2001) Changes in the profile of genistein, daidzein, and their conjugates during thermal processing of tofu. J Agric Food Chem 49(6):2839–2843Google Scholar
  95. Guevara-Cruz M, Tovar AR, Larrieta E, Canizales-Quinteros S, Torres N (2010) Increase in HDL-C concentration by a dietary portfolio with soy protein and soluble fiber is associated with the presence of the ABCA1R230C variant in hyperlipidemic Mexican subjects. Mol Genet Metab 101(2–3):268–272Google Scholar
  96. Guha N, Kwan ML, Quesenberry CP Jr, Weltzien EK, Castillo AL, Caan BJ (2009) Soy isoflavones and risk of cancer recurrence in a cohort of breast cancer survivors: the Life after Cancer Epidemiology study. Breast Cancer Res Treat 118(2):395–405Google Scholar
  97. Gurfinkel DM, Rao AV (2003) Soyasaponins: the relationship between chemical structure and colon anticarcinogenic activity. Nutr Cancer 47(1):24–33Google Scholar
  98. Gurfinkel DM, Reynolds WF, Rao AV (2005) The isolation of soyasaponins by fractional precipitation, solid phase extraction, and low pressure liquid chromatography. Int J Food Sci Nutr 56(7):501–519Google Scholar
  99. Hall WL, Vafeiadou K, Hallund J, Bugel S, Koebnick C, Reimann M, Ferrari M, Branca F, Talbot D, Dadd T, Nilsson M, Dahlman-Wright K, Gustafsson JA, Minihane AM, Williams CM (2005) Soy-isoflavone-enriched foods and inflammatory biomarkers of cardiovascular disease risk in postmenopausal women: interactions with genotype and equol production. Am J Clin Nutr 82(6):1260–1268Google Scholar
  100. Han BZ, Rombouts FM, Nout MJR (2001) A Chinese fermented soybean food. Int J Food Microbiol 65(1–2):1–10Google Scholar
  101. Han BZ, Rombouts FM, Nout MJR (2004) Amino acid profiles of sufu, a Chinese fermented soybean food. J Food Compos Anal 17(6):689–698Google Scholar
  102. Han H, Zhong C, Zhang X, Liu R, Pan M, Tan L, Li Y, Wu J, Zhu Y, Huang W (2010) Genistein induces growth inhibition and G2/M arrest in nasopharyngeal carcinoma cells. Nutr Cancer 62(5):641–647Google Scholar
  103. Helferich WG, Andrade JE, Hoagland MS (2008) Phytoestrogens and breast cancer: a complex story. Inflammopharmacol 16(5):219–226Google Scholar
  104. Hermansen K, Søndergaard M, Høie L, Carstensen M, Brock B (2001) Beneficial effects of a soy-based dietary supplement on lipid levels and cardiovascular risk markers in type 2 diabetic subjects. Diabetes Care 24(2):228–233Google Scholar
  105. Hewitt AL, Singletary KW (2003) Soy extract inhibits mammary adenocarcinoma growth in a syngeneic mouse model. Cancer Lett 192(2):133–143Google Scholar
  106. Hilakivi-Clarke L, Andrade JE, Helferich W (2010) Is soy consumption good or bad for the breast? J Nutr 140(12):2326S–2334SGoogle Scholar
  107. Hillman GG, Wang Y, Kucuk O, Che M, Doerge DR, Yudelev M, Joiner MC, Marples B, Forman JD, Sarkar FH (2004) Genistein potentiates inhibition of tumor growth by radiation in a prostate cancer orthotopic model. Mol Cancer Ther 3(10):1271–1279Google Scholar
  108. Hilpert KF, Kris-Etherton PM, West SG (2005) Lipid response to a low-fat diet with or without soy is modified by C-reactive protein status in moderately hypercholesterolemic adults.J Nutr 135(5):1075–1079Google Scholar
  109. Ho VS, Ng TB (2008) A Bowman-Birk trypsin inhibitor with antiproliferative activity from Hokkaido large black soybeans. J Pept Sci 14(3):278–282Google Scholar
  110. Ho SC, Chan AS, Ho YP, So EK, Sham A, Zee B, Woo JL (2007a) Effects of soy isoflavone supplementation on cognitive function in Chinese postmenopausal women: a double-blind, randomized, controlled trial. Menopause 14(3 Pt 1):489–499Google Scholar
  111. Ho SC, Chen YM, Ho SS, Woo JL (2007b) Soy isoflavone supplementation and fasting serum glucose and lipid profile among postmenopausal Chinese women: a double-blind, randomized, placebo-controlled trial. Menopause 14(5):905–912Google Scholar
  112. Hooper L, Madhavan G, Tice JA, Leinster SJ, Cassidy A (2010) Effects of isoflavones on breast density in pre- and post-menopausal women: a systematic review and meta-analysis of randomized controlled trials. Hum Reprod Update 16(6):745–760Google Scholar
  113. Ho SC, Woo J, Lam S, Chen Y, Sham A, Lau J (2003) Soy protein consumption and bone mass in early postmenopausal Chinese women. Osteoporos Int 14(10):835–842Google Scholar
  114. Hooshmand S, Juma S, Arjmandi BH (2010) Combination of genistin and fructooligosaccharides prevents bone loss in ovarian hormone deficiency. J Med Food 13(2):320–325Google Scholar
  115. Hsieh CC, Hernández-Ledesma B, Jeong HJ, Park JH, de Lumen BO (2010) Complementary roles in cancer prevention: protease inhibitor makes the cancer preventive peptide lunasin bioavailable. PLoS ONE 5(1):e8890Google Scholar
  116. Hsieh HM, Wu WM, Hu ML (2009) Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food Chem Toxicol 47(3):625–632Google Scholar
  117. Hsu A, Bray TM, Helferich WG, Doerge DR, Ho E (2010b) Differential effects of whole soy extract and soy isoflavones on apoptosis in prostate cancer cells. Exp Biol Med (Maywood) 235(1):90–97Google Scholar
  118. Hsu A, Bray TM, Ho E (2010a) Anti-inflammatory activity of soy and tea in prostate cancer prevention. Exp Biol Med (Maywood) 235(6):659–667Google Scholar
  119. Huang ZR, Hung CF, Lin YK, Fang JY (2008) In vitro and in vivo evaluation of topical delivery and potential dermal use of soy isoflavones genistein and daidzein. Int J Pharm 364(1):36–44Google Scholar
  120. Huh D, Bae MJ, Jo DJ, Kim JO, Lee KA, Lee GD (2007) Physicochemical and functional properties of germinated Glycine max Merr soybeans. J Food Sci Nutr 12:209–216Google Scholar
  121. Huntley A (2004) Soy for the treatment of perimenopausal symptoms—a systematic review. Maturitas 47(1):1–9Google Scholar
  122. Hussain M, Banerjee M, Sarkar FH, Djuric Z, Pollak MN, Doerge D, Fontana J, Chinni S, Davis J, Forman J, Wood DP, Kucuk O (2003) Soy isoflavones in the treatment of prostate cancer. Nutri Cancer 47(2):111–117Google Scholar
  123. Hwang CH, Chou CC (1999) Volatile components of the Chinese fermented soya bean curd as affected by the addition of ethanol in ageing solution. J Sci Food Agric 79(2):243–248Google Scholar
  124. Hwang DL, Foard DE, Wei CH (1977) A soybean trypsin inhibitor, crystallization and x-ray crystallographic study. J Biolog Chem 252(3):1099–1101Google Scholar
  125. Hwang SY, Taylor CG, Zahradka P, Bankovic-Calic N, Ogborn MR, Aukema HM (2008) Dietary soy protein reduces early renal disease progression and alters prostanoid production in obese fa/fa Zucker rats. J Nutr Biochem 19(4):255–262Google Scholar
  126. Hwang YW, Kim SY, Jee SH, Kim YN, Nam CM (2009) Soy food consumption and risk of prostate cancer: a meta-analysis of observational studies. Nutr Cancer 61(5):598–606Google Scholar
  127. Hymowitz T, Newell CA (1980) Taxonomy, speciation, domestication, dissemination, germplasm resources and variation in the genus Gycine. In: Summerfield RJ, Bunting AH (eds) Advances in Legume Research. Royal Botanical Gardens, Kew, United Kingdom. pp 251–264.Google Scholar
  128. Hymowitz T, Singh RJ (1987) Taxonomy and speciation. In: Wilcox J (ed) Soybeans: improvement, production, and uses, 2nd edn, Agronomy monograph no. 16., pp 23–48Google Scholar
  129. Ibrahim WH, Habib HM, Chow CK, Bruckner GG (2008) Isoflavone-rich soy isolate reduces lipid peroxidation in mouse liver. Int J Vitam Nutr Res 78(4–5):217–222Google Scholar
  130. Ikeda Y, Iki M, Morita A, Kajita E, Kagamimori S, Kagawa Y, Yoneshima H (2006) Intake of fermented soybeans, natto, is associated with reduced bone loss in postmenopausal women: Japanese Population-Based Osteoporosis (JPOS) Study. J Nutr 136(5):1323–1328Google Scholar
  131. Iki M, Kagamimori S, Kagawa Y, Matsuzaki T, Yoneshima H, Marumo F (2001) Bone mineral density of the spine, hip and distal forearm in representative samples of the Japanese female population: Japanese Population-Based Osteoporosis (JPOS) Study. Osteoporos Int 12(7):529–537Google Scholar
  132. Inoue K, Gotou T, Kitajima H, Mizuno S, Nakazawa T, Yamamoto N (2009) Release of antihypertensive peptides in miso paste during its fermentation, by the addition of casein. J Biosci Bioeng 108(2):111–115Google Scholar
  133. Jang H, Ha US, Kim SJ, Yoon BI, Han DS, Yuk SM, Kim SW (2010) Anthocyanin extracted from black soybean reduces prostate weight and promotes apoptosis in the prostatic hyperplasia-induced rat model. J Agric Food Chem 58(24):12686–12691Google Scholar
  134. Jayagopal V, Albertazzi P, Kilpatrick ES, Howarth EM, Jennings PE, Hepburn DA, Atkin SL (2002) Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabetes Care 25(10):1709–1714Google Scholar
  135. Jenkins DJ, Kendall CW, D’Costa MA, Jackson CJ, Vidgen E, Singer W, Silverman JA, Koumbridis G, Honey J, Rao AV, Fleshner N, Klotz L (2003a) Soy consumption and phytoestrogens: effect on serum prostate specific antigen when blood lipids and oxidized low-density lipoprotein are reduced in hyperlipidemic men. J Urol 169(2):507–511Google Scholar
  136. Jenkins DJ, Kendall CW, Garsetti M, Rosenberg-Zand RS, Jackson CJ, Agarwal S, Rao AV, Diamandis EP, Parker T, Faulkner D, Vuksan V, Vidgen E (2000a) Effect of soy protein foods on low-density lipoprotein oxidation and ex vivo sex hormone receptor activity – a controlled crossover trial. Metabolism 49(4):537–543Google Scholar
  137. Jenkins DJ, Kendall CW, Jackson CJ, Connelly PW, Parker T, Faulkner D, Vidgen E, Cunnane SC, Leiter LA, Josse RG (2002) Effects of high- and low-isoflavone soyfoods on blood lipids, oxidized LDL, homocysteine, and blood pressure in hyperlipidemic men and women. Am J Clin Nutr 76(2):365–372Google Scholar
  138. Jenkins DJ, Kendall CW, Marchie A, Faulkner DA, Wong JM, de Souza R, Emam A, Parker TL, Vidgen E, Lapsley KG, Trautwein EA, Josse RG, Leiter LA, Connelly PW (2003b) Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein. JAMA 290:502–510Google Scholar
  139. Jenkins DJ, Kendall CW, Vidgen E, Mehling CC, Parker T, Seyler H, Faulkner D, Garsetti M, Griffin LC, Agarwal S, Rao AV, Cunnane SC, Ryan MA, Connelly PW, Leiter LA, Vuksan V, Josse R (2000b) The effect on serum lipids and oxidized low-density lipoprotein of supplementing self-selected low-fat diets with soluble-fiber, soy, and vegetable protein foods. Metabolism 49(1):67–72Google Scholar
  140. Jenkins DJ, Mirrahimi A, Srichaikul K, Berryman CE, Wang L, Carleton A, Abdulnour S, Sievenpiper JL, Kendall CW, Kris-Etherton PM (2010) Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J Nutr 140(12):2302S–2311SGoogle Scholar
  141. Jiménez-Escrig A, Serra M-T, Rupérez P (2010) Non-digestible carbohydrates in Brazilian soybean seeds [Glycine max (L.) Merril]. Int J Food Sci Technol 45(12):2524–2530Google Scholar
  142. Jones KL, Harty J, Roeder MJ, Winters TA, Banz WJ (2005) In vitro effects of soy phytoestrogens on rat L6 skeletal muscle cells. J Med Food 8(3):327–331Google Scholar
  143. Juan MY, Chou CC (2010) Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715. Food Microbiol 27(5):586–591Google Scholar
  144. Juan MY, Wu CH, Chou CC (2010) Fermentation with Bacillus spp. as a bioprocess to enhance anthocyanin content, the angiotensin converting enzyme inhibitory effect, and the reducing activity of black soybeans. Food Microbiol 27(7):918–923Google Scholar
  145. Kaludjerovic J, Ward WE (2009) Neonatal exposure to daidzein, genistein, or the combination modulates bone development in female CD-1 mice. J Nutr 139(3):467–473Google Scholar
  146. Kaludjerovic J, Ward WE (2010) Neonatal administration of isoflavones attenuates deterioration of bone tissue in female but not male mice. J Nutr 140(4):766–772Google Scholar
  147. Kang X, Jin S, Zhang Q (2009) Antitumor and antiangiogenic activity of soy phytoestrogen on 7,12-dimethylbenz[alpha]anthracene-induced mammary tumors following ovari­ectomy in Sprague-Dawley rats. J Food Sci 74(7):H237–H242Google Scholar
  148. Kang X, Zhang Q, Wang S, Huang X, Jin S (2010) Effect of soy isoflavones on breast cancer recurrence and death for patients receiving adjuvant endocrine therapy. CMAJ 182(17):1857–1862Google Scholar
  149. Kao FJ, Su NW, Lee MH (2004) Effect of water-to-bean ratio on the contents and compositions of isoflavones in tofu. J Agric Food Chem 52(8):2277–2281Google Scholar
  150. Kiers JL, Nout MJ, Rombouts FM, Nabuurs MJ, van der Meulen J (2002) Inhibition of adhesion of enterotoxigenic Escherichia coli K88 by soya bean tempe. Lett Appl Microbiol 35(4):311–315Google Scholar
  151. Kim HA, Jeong KS, Kim YK (2008) Soy extract is more potent than genistein on tumor growth inhibition. Anticancer Res 28(5A):2837–2841Google Scholar
  152. Kim HJ, Suh HJ, Kim JH, Kang SC, Park S, Lee CH, Kim JS (2010) Estrogenic activity of glyceollins isolated from soybean elicited with Aspergillus sojae. J Med Food 13(2):382–390Google Scholar
  153. Kim J, Kang M, Lee JS, Inoue M, Sasazuki S, Tsugane S (2011) Fermented and non-fermented soy food consumption and gastric cancer in Japanese and Korean populations: a meta-analysis of observational studies. Cancer Sci 102(1):231–244Google Scholar
  154. Kishida T, Mizushige T, Ohtsu Y, Ishikawa S, Nagamoto M, Izumi T, Obata A, Ebihara K (2008) Dietary soy isoflavone-aglycone lowers food intake in female rats with and without ovariectomy. Obesity 16(2):290–297Google Scholar
  155. Klejdus B, Mikelová R, Petrlová J, Potesil D, Adam V, Stiborová M, Hodek P, Vacek J, Kizek R, Kubán V (2005) Evaluation of isoflavone aglycon and glycoside distribution in soy plants and soybeans by fast column high-performance liquid chromatography coupled with a diode-array detector. J Agric Food Chem 53(15):5848–5852Google Scholar
  156. Ko KP, Park SK, Cho LY, Gwack J, Yang JJ, Shin A, Kim CS, Kim Y, Kang D, Chang SH, Shin HR, Yoo KY (2009) Soybean product intake modifies the association between interleukin-10 genetic polymorphisms and gastric cancer risk. J Nutr 139(5):1008–1012Google Scholar
  157. Ko KP, Park SK, Park B, Yang JJ, Cho LY, Kang C, Kim CS, Gwack J, Shin A, Kim Y, Kim J, Yang HK, Kang D, Chang SH, Shin HR, Yoo KY (2010) Isoflavones from phytoestrogens and gastric cancer risk: a nested case-control study within the Korean Multicenter Cancer Cohort. Cancer Epidem Biomar 19(5):1292–1300Google Scholar
  158. Krauss RM, Eckel RH, Howard B, Appel LJ, Daniels SR, Deckelbaum RJ, Erdman JW Jr, Kris-Etherton P, Goldberg IJ, Kotchen TA, Lichtenstein AH, Mitch WE, Mullis R, Robinson K, Wylie-Rosett J, St Jeor S, Suttie J, Tribble DL, Bazzarre TL (2000) AHA Dietary Guidelines: revision 2000: a statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Stroke 31:2751–2766Google Scholar
  159. Krebs EE, Ensrud KE, MacDonald R, Wilt TJ (2004) Phytoestrogens for treatment of menopausal symptoms: a systematic review. Obstet Gynecol 104:824–836Google Scholar
  160. Krishnan HB, Kim WS, Jang S, Kerley MS (2009) All three subunits of soybean beta-conglycinin are potential food allergens. J Agric Food Chem 57(3):938–943Google Scholar
  161. Kubo Y, Ishimoto A, Amanuma H (2003) Genistein, a protein tyrosine kinase inhibitor, suppresses the fusogenicity of Moloney murine leukemia virus envelope protein in XC cells. Arch Virol 148(10):1899–1914Google Scholar
  162. Kubota M, Shimizu H (2009) Nutrition and bone health. Soybean and soy foods, and bone health. Clin Calcium 19(10):1514–1519 (In Japanese)Google Scholar
  163. Kumar V, Rani A, Dixit AK, Bhatnagar D, Chauhan GS (2009) Relative changes in tocopherols, isoflavones, total phenolic content, and antioxidative activity in soybean seeds at different reproductive stages. J Agric Food Chem 57(7):2705–2710Google Scholar
  164. Kumar V, Rani A, Goyal L, Dixit AK, Manjaya JG, Dev J, Swamy M (2010) Sucrose and raffinose family oligosaccharides (RFOs) in soybean seeds as influenced by genotype and growing location. J Agric Food Chem 58(8):5081–5085Google Scholar
  165. Kunitz M (1947) Crystalline soybean trypsin inhibitor II. Gen properties. J Gen Physiol 30(4):291–310Google Scholar
  166. Kwon DY, Daily JW 3rd, Kim HJ, Park S (2010) Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr Res 30(1):1–13Google Scholar
  167. Kwon DY, Hong SM, Ahn IS, Kim MJ, Yang HJ, Park S (2011) Isoflavonoids and peptides from meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutrition 27(2):244–52Google Scholar
  168. Kwon DY, Hong SM, Ahn IS, Kim YS, Shin DW, Park S (2009) Kochujang, a Korean fermented red pepper plus soybean paste, improves glucose homeostasis in 90% pancreatectomized diabetic rats. Nutrition 25(7–8):790–799Google Scholar
  169. Kwon DY, Jang JS, Lee JE, Kim YS, Shin DH, Park S (2006) The isoflavonoid aglycone-rich fractions of Chungkookjang, fermented unsalted soybeans, enhance insulin signaling and peroxisome proliferator-activated receptor-gamma activity in vitro. Biofactors 26(4):245–258Google Scholar
  170. Kwon DY, Hong SM, Lee JE, Sung SR, Park S (2007) Long-term consumption of fermented soybean-derived Chungkookjang attenuates hepatic insulin resistance in 90% pancreatectomized diabetic rats. Horm Metab Res 39(10):752–757Google Scholar
  171. Lajolo FM, Genovese MI (2002) Nutritional significance of lectins and enzyme inhibitors from legumes. J Agric Food Chem 50:6592–9598Google Scholar
  172. Lattrich C, Lubig J, Springwald A, Goerse R, Ortmann O, Treeck O (2011) Additive effects of trastuzumab and genistein on human breast cancer cells. Anticancer Drugs 22(3):253–261Google Scholar
  173. Lee J, Renita M, Fioritto RJ, St Martin SK, Schwartz SJ, Vodovotz Y (2004) Isoflavone characterization and antioxidant activity of Ohio soybeans. J Agric Food Chem 52(9):2647–2651Google Scholar
  174. Lee SA, Shu XO, Li H, Yang G, Cai H, Wen W, Ji BT, Gao J, Gao YT, Zheng W (2009) Adolescent and adult soy food intake and breast cancer risk: results from the Shanghai Women’s Health Study. Am J Clin Nutr 89(6):1920–1926Google Scholar
  175. Lee SJ, Kim JJ, Moon HI, Ahn JK, Chun SC, Jung WS, Lee OK, Chung IM (2008) Analysis of isoflavones and phenolic compounds in Korean soybean [Glycine max(L.) Merrill] seeds of different seed weights. J Agric Food Chem 56(8):2751–2758Google Scholar
  176. Lephart ED, Porter JP, Lund TD, Bu L, Setchell KD, Ramoz G, Crowley WR (2004) Dietary isoflavones alter regulatory behaviors, metabolic hormones and neuroendocrine function in Long-Evans male rats. Nutr Metab (London) 1(1):16Google Scholar
  177. Lethaby A, Marjoribanks J, Kronenberg F, Roberts H, Eden J, Brown J (2007) Phytoestrogens for vasomotor menopausal symptoms. Cochrane Database Syst Rev 4:CD001395Google Scholar
  178. Levis S, Griebeler ML (2010) The role of soy foods in the treatment of menopausal symptoms. J Nutr 140(12):2318S–2321SGoogle Scholar
  179. Li D, Graef GL, Yee JA, Yan L (2004) Dietary supplementation with high-selenium soy protein reduces pulmonary metastasis of melanoma cells in mice. J Nutr 134(6):1536–1540Google Scholar
  180. Li FS (1994) Study on origin and evolution of soybean. Soybean Sci 13(1):61–66Google Scholar
  181. Liang W, Lee AH, Binns CW, Huang R, Hu D, Shao H (2009) Soy consumption reduces risk of ischemic stroke: a case-control study in southern China. Neuroepidemiol 33(2):111–116Google Scholar
  182. Lichtenstein A (1998) Soy protein, isoflavones, and cardiovascular disease risk. J Nutr 128:1589–1592Google Scholar
  183. Liener IE (1994) Implications of antinutritional components in soybean foods. Crit Rev Food Sci Nutr 34(1):31–67Google Scholar
  184. Lin P, Ye X, Ng T (2008) Purification of melibiose-binding lectins from two cultivars of Chinese black soybeans. Acta Biochim Biophys Sin (Shanghai) 40(12):1029–1038Google Scholar
  185. Liss MA, Schlicht M, Degueme A, Hessner M, Datta MW (2010a) Use of cross species genomic profiling identifies pathways and genes differentially regulated in prostate cancer cells treated with soy protein isolates or purified genistein. Cancer Genomics Proteomics 7(3):111–128Google Scholar
  186. Liss MA, Schlicht M, Kahler A, Fitzgerald R, Thomassi T, Degueme A, Hessner M, Datta MW (2010b) Characterization of soy-based changes in Wnt-frizzled signaling in prostate cancer. Cancer Genomics Proteomics 7(5):245–252Google Scholar
  187. Liu KS (1997) Soybeans: chemistry, technology, and utilization. Springer, Dordrecht, 532 ppGoogle Scholar
  188. Liu X, Feng J, Xu ZR, Wang YZ, Liu JX (2008) Oral allergy syndrome and anaphylactic reactions in BALB/c mice caused by soybean glycinin and beta-conglycinin. Clin Exp Allergy 38(2):350–356Google Scholar
  189. Liu YQ, Xin TR, Liang JJ, Wang WM, Zhang YY (2010a) Memory performance, brain excitatory amino acid and acetylcholinesterase activity of chronically aluminum exposed mice in response to soy isoflavones treatment. Phytother Res 24(10):1451–1456Google Scholar
  190. Liu ZM, Chen YM, Ho SC, Ho YP, Woo J (2010b) Effects of soy protein and isoflavones on glycemic control and insulin sensitivity: a 6-mo double-blind, randomized, placebo-controlled trial in postmenopausal Chinese women with prediabetes or untreated early diabetes. Am J Clin Nutr 91(5):1394–1401Google Scholar
  191. Llaneza P, González C, Fernandez-Iñarrea J, Alonso A, Diaz F, Arnott I, Ferrer-Barriendos J (2011) Soy isoflavones, diet and physical exercise modify serum cytokines in healthy obese postmenopausal women. Phytomed 18(4):245–50Google Scholar
  192. Llaneza P, Gonzalez C, Fernandez-Iñarrea J, Alonso A, Diaz-Fernandez MJ, Arnott I, Ferrer-Barriendos J (2010) Soy isoflavones, Mediterranean diet, and physical exercise in postmenopausal women with insulin resistance. Menopause 17(2):372–378Google Scholar
  193. Lovati MR, Manzoni C, Gianazza E, Arnoldi A, Kurowska E, Carroll KK, Sirtori CR (2000) Soy protein peptides regulate cholesterol homeostasis in Hep G2 cells. J Nutr 130:2543–2549Google Scholar
  194. Lu HC (2005) Chinese natural cures. Black Dog & Leventhal Publishers, New York, 512 ppGoogle Scholar
  195. Lyu SY, Rhim JY, Park WB (2005) Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch Pharm Res 28(11):1293–1301Google Scholar
  196. Ma D-F, Qin L-Q, Wang P-Y, Katoh R (2008) Soy isoflavone intake inhibits bone resorption and stimulates bone formation in menopausal women: meta-analysis of randomized controlled trials. Eur J Clin Nutr 62(2):155–161Google Scholar
  197. Ma WW, Xiang L, Yu HL, Yuan LH, Guo AM, Xiao YX, Li L, Xiao R (2009) Neuroprotection of soyabean isoflavone co-administration with folic acid against beta-amyloid 1-40-induced neurotoxicity in rats. Br J Nutr 102(4):502–505Google Scholar
  198. Macfarlane GT, Steeds H, Macfarlane S (2008) Bacterial metabolism and health related effects of galactooligosaccharides and other prebiotics. J Appl Microbiol 104(2):305–344Google Scholar
  199. Marín-Manzano MC, Ruiz R, Jiménez E, Rubio LA, Clemente A (2009) Anti-carcinogenic soyabean Bowman-Birk inhibitors survive faecal fermentation in their active form and do not affect the microbiota composition in vitro. Br J Nutr 101(7):967–971Google Scholar
  200. Martínez-Montemayor MM, Otero-Franqui E, Martinez J, De La Mota-Peynado A, Cubano LA, Dharmawardhane S (2010) Individual and combined soy isoflavones exert differential effects on metastatic cancer progression. Clin Exp Metastasis 27(7):465–480Google Scholar
  201. Martinez-Villaluenga C, Bringe NA, Berhow MA, Gonzalez de Mejia E (2008) Beta-conglycinin embeds active peptides that inhibit lipid accumulation in 3 T3-L1 adipocytes in vitro. J Agric Food Chem 56(22):10533–10543Google Scholar
  202. Martinez-Villaluenga C, Dia VP, Berhow M, Bringe NA, Gonzalez de Mejia E (2009) Protein hydrolysates from beta-conglycinin enriched soybean genotypes inhibit lipid accumulation and inflammation in vitro. Mol Nutr Food Res 53(8):1007–1018Google Scholar
  203. Martinez-Villaluenga C, Rupasinghe SG, Schuler MA, Gonzalez de Mejia E (2010) Peptides from purified soybean beta-conglycinin inhibit fatty acid synthase by interaction with the thioesterase catalytic domain. FEBS J 277(6):1481–1493Google Scholar
  204. Maskarinec G, Verheus M, Steinberg FM, Amato P, Cramer MK, Lewis RD, Murray MJ, Young RL, Wong WW (2009) Various doses of soy isoflavones do not modify mammographic density in postmenopausal women. J Nutr 139(5):981–986Google Scholar
  205. Mathey J, Mardon J, Fokialakis N, Puel C, Kati-Coulibaly S, Mitakou S, Bennetau-Pelissero C, Lamothe V, Davicco MJ, Lebecque P, Horcajada MN, Coxam V (2007) Modulation of soy isoflavones bioavailability and subsequent effects on bone health in ovariectomized rats: the case for equol. Osteoporos Int 18(5):671–679Google Scholar
  206. Matsui T, Zhu XL, Shiraishi K, Ueki T, Noda Y, Matsumoto K (2010) Antihypertensive effect of salt-free soy sauce, a new fermented seasoning, in spontaneously hypertensive rats. J Food Sci 75(4):H129–H134Google Scholar
  207. Matsuo K, Hiraki A, Ito H, Kosaka T, Suzuki T, Hirose K, Wakai K, Yatabe Y, Mitsudomi T, Tajima K (2008) Soy consumption reduces the risk of non-small-cell lung cancers with epidermal growth factor receptor mutations among Japanese. Cancer Sci 99(6):1202–1208Google Scholar
  208. Mazur WM, Duke JA, Wahala K, Rasku S, Adlercreutz H (1998) Isoflavonoids and lignans in legumes: nutritional and health aspects in humans. J Nutr Biochem 6:193–200Google Scholar
  209. McCue P, Kwon YI, Shetty K (2005) Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean. Asia Pac J Clin Nutr 14(2):145–152Google Scholar
  210. McVeigh BL, Dillingham BL, Lampe JW, Duncan AM (2006) Effect of soy protein varying in isoflavone content on serum lipids in healthy young men. Am J Clin Nutr 83(2):244–251Google Scholar
  211. Mebrahtu T, Mohamed A, Elmi A (1997) Accumulation of phytate in vegetable-type soybean genotypes harvested at four developmental stages. Plant Food Hum Nutr 50:179–187Google Scholar
  212. Merz-Demlow BE, Duncan AM, Wangen KE, Xu X, Carr TP, Phipps WR, Kurzer MS (2000) Soy isoflavones improve plasma lipids in normocholesterolemic, premenopausal women. Am J Clin Nutr 71(6):1462–1469Google Scholar
  213. Messina M (2002) Soy foods and soybean isoflavones and menopausal health. Nutr Clin Care 5(6):272–282Google Scholar
  214. Messina M (2003) Emerging evidence on the role of soy in reducing prostate cancer risk. Nutri Rev 61(4):117–131Google Scholar
  215. Messina M (2010) Soybean isoflavone exposure does not have feminizing effects on men: a critical examination of the clinical evidence. Fertil Steril 93(7):2095–2104Google Scholar
  216. Messina M, Barnes S (1991) The role of soy products in reducing risk of cancer. J Natl Cancer Inst 83:2971–2875Google Scholar
  217. Messina M, Hilakivi-Clarke L (2009) Early intake appears to be the key to the proposed protective effects of soy intake against breast cancer. Nutr Cancer 61(6):792–798Google Scholar
  218. Messina M, Ho S, Alekel DL (2004) Skeletal benefits of soy isoflavones: a review of the clinical trial and epidemiologic data. Curr Opin Clin Nutri Metab Care 7(6):649–658Google Scholar
  219. Messina M, Hughes C (2003) Efficacy of soyfoods and soybean isoflavone supplements for alleviating menopausal symptoms is positively related to initial hot flush frequency. J Med Food 6(1):1–11Google Scholar
  220. Messina M, Loprinzi CL (2001) Soy for breast cancer survivors: a critical review of the literature. J Nutr 131(11 Suppl):3095S–3108SGoogle Scholar
  221. Messina M, Wu AH (2009) Perspectives on the soy-breast cancer relation. Am J Clin Nutr 89(5):1673S–1679SGoogle Scholar
  222. Michelfelder AJ (2009) Soy: a complete source of protein. Am Fam Physician 79(1):43–47Google Scholar
  223. Min WK, Sung HY, Choi YS (2010) Suppression of colonic aberrant crypt foci by soy isoflavones is dose-independent in dimethylhydrazine-treated rats. J Med Food 13(3):495–502Google Scholar
  224. Ministry of Agriculture, Forestry & Fisheries Genebank, Japan (1998) The illustrated legume genetic resources database. http://www.gene.affrc.go.jp/plant/image/index.html.
  225. Mishra R, Bhadauria S, Murthy PK, Murthy PS (2011) Glycine soya diet synergistically enhances the suppressive effect of tamoxifen and inhibits tamoxifen-promoted hepatocarcinogenesis in 7,12-dimethylbenz[α]anthracene-induced rat mammary tumor model. Food Chem Toxicol 49(2):434–440Google Scholar
  226. Mishra R, Tiwari A, Bhadauria S, Mishra J, Murthy PK, Murthy PS (2010) Therapeutic effect of centchroman alone and in combination with glycine soya on 7,12-dimethylbenz[alpha]anthracene-induced breast tumor in rat. Food Chem Toxicol 48(6):1587–1591Google Scholar
  227. Miyazawa M, Sakano K, Nakamura S, Kosaka H (1999) Antimutagenic activity of isoflavones from soybeans seeds (Glycine max Merrill). J Agric Food Chem 47(4):1346–1349Google Scholar
  228. Mohamed A, Rangappa M (1992) Nutrient composition and anti-nutritional factors in vegetable soybean: II. Oil, fatty acids, sterols, and lipoxygenase activity. Food Chem 44(4):277–282Google Scholar
  229. Mohamed A, Rao MSS, Mebrahtu T (2001) Nutritional and health benefits of vegetable soybean: Beyond protein and oil. In: Lumpkin TA, Shanmugasundaram S (Compilers), Int. Vegetable Soybean Conference, 2nd, Tacoma, WA. 10–12 Aug 2001. Washington State University, Pullman. pp 131–134Google Scholar
  230. Morais JK, Gomes VM, Oliveira JT, Santos IS, Da Cunha M, Oliveira HD, Oliveira HP, Sousa DO, Vasconcelos IM (2010) Soybean toxin (SBTX), a protein from soybeans that inhibits the life cycle of plant and human pathogenic fungi. J Agric Food Chem 58(19):10356–10363Google Scholar
  231. Moriyama T, Kishimoto K, Nagai K, Urade R, Ogawa T, Utsumi S, Maruyama N, Maebuchi M (2004) Soybean beta-conglycinin diet suppresses serum triglyceride levels in normal and genetically obese mice by induction of beta-oxidation, downregulation of fatty acid synthase, and inhibition of triglyceride absorption. Biosci Biotechnol Biochem 68(2):352–359Google Scholar
  232. Morris C, Thorpe J, Ambrosio L, Santin M (2006) The soybean isoflavone genistein induces differentiation of MG63 human osteosarcoma osteoblasts. J Nutr 136(5):1166–1170Google Scholar
  233. Na XL, Liu XW, Chen WH (2005) Effects of soybean isoflavone on body weight and food utilization rate in ovariectomized rats. Wei Sheng Yan Jiu 34(4):433–435 (In Chinese)Google Scholar
  234. Nagata C (2010) Factors to consider in the association between soy isoflavone intake and breast cancer risk. J Epidemiol 20(2):83–89Google Scholar
  235. Nagata C, Takatsuka N, Kawakami N, Shimizu H (2002) A prospective cohort study of soy product intake and stomach cancer death. Br J Cancer 87(1):31–36Google Scholar
  236. Nahas EA, Nahas-Neto J, Orsatti FL, Carvalho EP, Oliveira ML, Dias R (2007) Efficacy and safety of a soy isoflavone extract in postmenopausal women: a randomized, double-blind, and placebo-controlled study. Maturitas 58(3):249–258Google Scholar
  237. Nakahara T, Sano A, Yamaguchi H, Sugimoto K, Chikata H, Kinoshita E, Uchida R (2010) Antihypertensive effect of peptide-enriched soy sauce-like seasoning and identification of its angiotensin I-converting enzyme inhibitory substances. J Agric Food Chem 58(2):821–827Google Scholar
  238. Nakai M, Cook L, Pyter LM, Black M, Sibona J, Turner RT, Jeffery EH, Bahr JM (2005) Dietary soy protein and isoflavones have no significant effect on bone and a potentially negative effect on the uterus of sexually mature intact Sprague-Dawley female rats. Menopause 12(3):291–298Google Scholar
  239. Nakamura Y, Tsuji S, Tonogai Y (2000) Determination of the levels of isoflavonoids in soybeans and soy-derived foods and estimation of isoflavonoids in the Japanese daily intake. J AOAC Int 83(3):635–650Google Scholar
  240. Nizamutdinova IT, Kim YM, Chung JI, Shin SC, Jeong YK, Seo HG, Lee JH, Chang KC, Kim HJ (2009) Anthocyanins from black soybean seed coats stimulate wound healing in fibroblasts and keratinocytes and prevent inflammation in endothelial cells. Food Chem Toxicol 47(11):2806–2812Google Scholar
  241. Norton G (1991) Proteinase inhibitors. In: D’Mello FJP, Duffus CM, Duffus JH (eds) Toxic substances in crop plants. The Royal Society of Chemistry, Cambridge, pp 68–106Google Scholar
  242. Ogborn MR, Nitschmann E, Bankovic-Calic N, Weiler HA, Aukema HM (2010) Dietary soy protein benefit in experimental kidney disease is preserved after isoflavone depletion of diet. Exp Biol Med (Maywood) 235(11):1315–1320Google Scholar
  243. Oh HY, Lim S, Lee JM, Kim DY, Ann ES, Yoon S (2007) A combination of soy isoflavone supplementation and exercise improves lipid profiles and protects antioxidant defense-systems against exercise-induced oxidative stress in ovariectomized rats. Biofactors 29(4):175–185Google Scholar
  244. Okabe Y, Shimazu T, Tanimoto H (2011) Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women. J Sci Food Agric 91(4):658–663Google Scholar
  245. Okura A, Arakawa H, Oka H, Yoshinari T, Monden Y (1988) Effect of genistein on topoisomerase activity and on the growth of [Val 12] Ha-ras-transformed NIH 3 T3 cells. Biochem Biophys Res Commun 157:183–189Google Scholar
  246. Ørgaard A, Jensen L (2008) The effects of soy isoflavones on obesity. Exp Biol Med 233(9):1066–1080Google Scholar
  247. Pan W, Ikeda K, Takebe M, Yamori Y (2001) Genistein, daidzein and glycitein inhibit growth and DNA synthesis of aortic smooth muscle cells from stroke-prone spontaneously hypertensive rats. J Nutr 131(4):1154–1158Google Scholar
  248. Park S, Ahn IS, Kim JH, Lee MR, Kim JS, Kim HJ (2010) Glyceollins, one of the phytoalexins derived from soybeans under fungal stress, enhance insulin sensitivity and exert insulinotropic actions. J Agric Food Chem 58(3):1551–1557Google Scholar
  249. Paulo M, Salvador MM, Filho MAN, Montes MBA, Franceschini SA, Toloi MRT (2009) Effect of isoflavone extracts from Glycine max on human endothelial cell damage and on nitric oxide production. Menopause 16(3):539–544Google Scholar
  250. Payton-Stewart F, Khupse RS, Boué SM, Elliott S, Zimmermann MC, Skripnikova EV, Ashe H, Tilghman SL, Beckman BS, Cleveland TE, McLachlan JA, Bhatnagar D, Wiese TE, Erhardt P, Burow ME (2010) Glyceollin I enantiomers distinctly regulate ER-mediated gene expression. Steroids 75(12):870–878Google Scholar
  251. Peluso MR, Winters TA, Shanahan MF, Banz WJ (2000) A cooperative interaction between soy protein and its isoflavone-enriched fraction lowers hepatic lipids in male obese Zucker rats and reduces blood platelet sensitivity in male Sprague-Dawley rats. J Nutr 130(9):2333–2342Google Scholar
  252. Peng CY, Sankaran D, Ogborn MR, Aukema HM (2009) Dietary soy protein selectively reduces renal prostanoids and cyclooxygenases in polycystic kidney disease. Exp Biol Med (Maywood) 234(7):737–743Google Scholar
  253. Pereira IRO, Abdalla DSP (2006) Soy isoflavones reduce heat shock proteins in experimental atherosclerosis. Eur J Nutr 45(3):178–186Google Scholar
  254. Picherit C, Coxam V, Bennetau-Pelissero C, Kati-Coulibaly S, Davicco MJ, Lebecque P, Barlet JP (2000) Daidzein is more efficient than genistein in preventing ovariectomy-induced bone loss in rats. J Nutr 130(7):1675–1681Google Scholar
  255. Pipe EA, Gobert CP, Capes SE, Darlington GA, Lampe JW, Duncan AM (2009) Soy protein reduces serum LDL cholesterol and the LDL cholesterol: HDL cholesterol and apolipoprotein B: apolipoprotein A-I ratios in adults with type 2 diabetes. J Nutr 139(9):1700–1706Google Scholar
  256. Porcher MH et al. (1995–2020) Searchable World Wide Web Multilingual Multiscript Plant Name Database. Published by The University of Melbourne. Australia. http://www.plantnames.unimelb.edu.au/Sorting/Frontpage.html
  257. Porter PM, Banwart WL, Hassett JJ (1985) HPLC isolation and GC-MS identification of genistein, daidzein, and coumestrol from unhydrolyzed soybean root extracts. Environ Exp Bot 25(3):229–232Google Scholar
  258. Potter SM (1995) Overview of proposed mechanisms for the hypocholesterolemic effect of soy. J Nutr 125(3 Suppl):606S–611SGoogle Scholar
  259. Purseglove JW (1968) Tropical crops: dicotyledons, vols 1 and 2. Longman, London, 719 ppGoogle Scholar
  260. Pyo YH, Lee TC (2007) The potential antioxidant capacity and angiotensin I-converting enzyme inhibitory activity of Monascus-fermented soybean extracts: evaluation of Monascus-fermented soybean extracts as multifunctional food additives. J Food Sci 72(3):S218–S223Google Scholar
  261. Pyo YH, Seong KS (2009) Hypolipidemic effects of Monascusli-fermented soybean extracts in rats fed a high-fat and -cholesterol diet. J Agric Food Chem 57(18):8617–8622Google Scholar
  262. Raffoul JJ, Banerjee S, Che M, Knoll ZE, Doerge DR, Abrams J, Kucuk O, Sarkar FH, Hillman GG (2007) Soy isoflavones enhance radiotherapy in a metastatic prostate cancer model. Int J Cancer 120(11):2491–2498Google Scholar
  263. Rahal OM, Simmen RC (2010) PTEN and p53 cross-regulation induced by soy isoflavone genistein promotes mammary epithelial cell cycle arrest and lobuloalveolar differentiation. Carcinogenesis 31(8):1491–1500Google Scholar
  264. Raju J, Bielecki A, Caldwell D, Lok E, Taylor M, Kapal K, Curran I, Cooke GM, Bird RP, Mehta R (2009) Soy isoflavones modulate azoxymethane-induced rat colon carcinogenesis exposed pre- and postnatally and inhibit growth of DLD-1 human colon adenocarcinoma cells by increasing the expression of estrogen receptor-beta. J Nutr 139(3):474–481Google Scholar
  265. Raynal NJ, Momparler L, Charbonneau M, Momparler RL (2008) Antileukemic activity of genistein, a major isoflavone present in soy products. J Nat Prod 71(1):3–7Google Scholar
  266. Reinwald S, Weaver CM (2010) Soy components vs. whole soy: are we betting our bones on a long shot? J Nutr 140(12):2312S–2317SGoogle Scholar
  267. Reynolds K, Chin A, Lees KA, Nguyen A, Bujnowski D, He J (2006) A meta-analysis of the effect of soy protein supplementation on serum lipids. Am J Cardiol 98(5):633–640Google Scholar
  268. Riaz MN (2006) Soy applications in food. CRC Press, Boca Raton, pp 155–184Google Scholar
  269. Ribeiro JK, Cunha DD, Fook JM, Sales MP (2010) New properties of the soybean trypsin inhibitor: inhibition of human neutrophil elastase and its effect on acute pulmonary injury. Eur J Pharmacol 644(1–3):238–244Google Scholar
  270. Ricci E, Cipriani S, Chiaffarino F, Malvezzi M, Parazzini F (2010) Effects of soy isoflavones and genistein on glucose metabolism in perimenopausal and postmenopausal non-Asian women: a meta-analysis of randomized controlled trials. Menopause 17(5):1080–1086Google Scholar
  271. Roubos-van den Hil PJ, Nout MJ, Beumer RR, van der Meulen J, Zwietering MH (2009) Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells. J Appl Microbiol 106(3):1013–1021Google Scholar
  272. Roubos-van den Hil PJ, Nout MJ, van der Meulen J, Gruppen H (2010a) Bioactivity of tempe by inhibiting adhesion of ETEC to intestinal cells, as influenced by fermentation substrates and starter pure cultures. Food Microbiol 27(5):638–644Google Scholar
  273. Roubos-van den Hil PJ, Schols HA, Nout MJ, Zwietering MH, Gruppen H (2010b) First characterization of bioactive components in soybean tempe that protect human and animal intestinal cells against enterotoxigenic Escherichia coli (ETEC) infection. J Agric Food Chem 58(13):7649–7656Google Scholar
  274. Sacks FM, Lichtenstein A, Van Horn L, Harris W, Kris-Etherton P, Winston M (2006) Soy protein, isoflavones, and cardiovascular health: an American Heart Association Science Advisory for professionals from the Nutrition Committee. Circulation 113(7):1034–1044Google Scholar
  275. Sakai T, Kogiso M (2008) Soy isoflavones and immunity. J Med Invest 55(3–4):167–173Google Scholar
  276. Sakai T, Furoku S, Nakamoto M, Shuto E, Hosaka T, Nishioka Y, Sone S (2010) The soy isoflavone equol enhances antigen-specific IgE production in ovalbumin-immunized BALB/c mice. J Nutr Sci Vitaminol (Tokyo) 56(1):72–76Google Scholar
  277. Sakthivelu G, Akitha Devi MK, Giridhar P, Rajasekaran T, Ravishankar GA, Nikolova MT, Angelov GB, Todorova RM, Kosturkova GP (2008) Isoflavone composition, phenol content, and antioxidant activity of soybean seeds from India and Bulgaria. J Agric Food Chem 56(6):2090–2095Google Scholar
  278. Salvo VA, Boué SM, Fonseca JP, Elliott S, Corbitt C, Collins-Burow BM, Curiel TJ, Srivastav SK, Shih BY, Carter-Wientjes C, Wood CE, Erhardt PW, Beckman BS, McLachlan JA, Cleveland TE, Burow ME (2006) Antiestrogenic glyceollins suppress human breast and ovarian carcinoma tumorigenesis. Clin Cancer Res 12(23):7159–7164Google Scholar
  279. Sandoval MJ, Cutini PH, Rauschemberger MB, Massheimer VL (2010) The soyabean isoflavone genistein modulates endothelial cell behaviour. Br J Nutr 104(2):171–179Google Scholar
  280. Santo AS, Santo AM, Browne RW, Burton H, Leddy JJ, Horvath SM, Horvath PJ (2010) Postprandial lipemia detects the effect of soy protein on cardiovascular disease risk compared with the fasting lipid profile. Lipids 45(12):1127–1138Google Scholar
  281. Sarkaki A, Amani R, Badavi M, Moghaddam AZ, Aligholi H, Safahani M, Haghighizadeh MH (2008) Pre-treatment effect of different doses of soy isoflavones on spatial learning and memory in an ovariectomized animal model of Alzheimer’s disease. Pak J Biol Sci 11(8):1114–1119Google Scholar
  282. Sarkaki A, Badavi M, Aligholi H, Moghaddam AZ (2009) Preventive effects of soy meal (+/− isoflavone) on spatial cognitive deficiency and body weight in an ovariectomized animal model of Parkinson’s disease. Pak J Biol Sci 12(20):1338–1345Google Scholar
  283. Satsu H, Hyun JS, Shin HS, Shimizu M (2009) Suppressive effect of an isoflavone fraction on tumor necrosis factor-alpha-induced interleukin-8 production in human intestinal epithelial Caco-2 cells. J Nutr Sci Vitaminol (Tokyo) 55(5):442–446Google Scholar
  284. Seow A, Koh WP, Wang R, Lee HP, Yu MC (2009) Reproductive variables, soy intake, and lung cancer risk among nonsmoking women in the Singapore Chinese Health Study. Cancer Epidemiol Biomark Prev 18(3):821–827Google Scholar
  285. Shanmugasundaram S, Sumarno X (1990/1992) Glycine max (L.) Merril. In: Maesen LJG, Van der Maesen LJG, Somaatmadja S (eds) Plant resources of South-East Asia, No 1. Pulses. Pudoc, Wageningen, pp 43–47Google Scholar
  286. Sherrill JD, Sparks M, Dennis J, Mansour M, Kemppainen BW, Bartol FF, Morrison EE, Akingbemi BT (2010) Developmental exposures of male rats to soy isoflavones impact Leydig cell differentiation. Biol Reprod 83(3):488–501Google Scholar
  287. Shimazu T, Inoue M, Sasazuki S, Iwasaki M, Sawada N, Yamaji T, Tsugane S, Japan Public Health Center-based Prospective Study Group (2010) Isoflavone intake and risk of lung cancer: a prospective cohort study in Japan. Am J Clin Nutr 91(3):722–728Google Scholar
  288. Shimazu T, Inoue M, Sasazuki S, Iwasaki M, Sawada N, Yamaji T, Tsugane S, The Japan Public Health Center-based Prospective Study Group (2011) Plasma isoflavones and the risk of lung cancer in women: a nested case-control study in Japan. Cancer Epidem Biomar 20(3):419–427Google Scholar
  289. Shin ZI, Yu R, Park SA, Chung DK, Ahn CW, Nam HS, Kim KS, Lee HJ (2001) His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J Agric Food Chem 49(6):3004–3009Google Scholar
  290. Shu XO, Zheng Y, Cai H, Gu K, Chen Z, Zheng W, Lu W (2009) Soy food intake and breast cancer survival. JAMA 302(22):2437–2443Google Scholar
  291. Shukla A, Brandsch C, Bettzieche A, Hirche F, Stangl GI, Eder K (2007) Isoflavone-poor soy protein alters the lipid metabolism of rats by SREBP-mediated down-regulation of hepatic genes. J Nutr Biochem 18(5):313–321Google Scholar
  292. Shurtleff W, Aoyagi A (2000) Tofu & soymilk production: a craft and technical manual. Soyfoods Center, Lafayette, 336 ppGoogle Scholar
  293. Singh AV, Franke AA, Blackburn GL, Zhou JR (2006) Soy phytochemicals prevent orthotopic growth and metastasis of bladder cancer in mice by alterations of cancer cell proliferation and apoptosis and tumor angiogenesis. Cancer Res 66(3):1851–1858Google Scholar
  294. Singh-Gupta V, Zhang H, Yunker CK, Ahmad Z, Zwier D, Sarkar FH, Hillman GG (2010) Daidzein effect on hormone refractory prostate cancer in vitro and in vivo compared to genistein and soy extract: potentiation of radiotherapy. Pharm Res 27(6):1115–1127Google Scholar
  295. Singh-Gupta V, Joiner MC, Runyan L, Yunker CK, Sarkar FH, Miller S, Gadgeel SM, Konski AA, Hillman GG (2011) Soy isoflavones augment radiation effect by inhibiting APE1/Ref-1 DNA repair activity in non-small cell lung cancer. J Thorac Oncol 6(4):688–98Google Scholar
  296. Sirtori CR, Lovati MR, Manzoni C, Monetti M, Pazzucconi F, Gatti E (1995) Soy and cholesterol reduction: clinical experience. J Nutr 125(3 Suppl):598S–605SGoogle Scholar
  297. Slavin M, Kenworthy W, Yu LL (2009) Antioxidant properties, phytochemical composition, and anti­proliferative activity of Maryland-grown soybeans with colored seed coats. J Agric Food Chem 57(23):11174–11185Google Scholar
  298. Song TT, Hendrich S, Murphy PA (1999) Estrogenic activity of glycitein, a soy isoflavone. J Agric Food Chem 47(4):1607–1610Google Scholar
  299. Stantchev TS, Markovic I, Telford WG, Clouse KA, Broder CC (2007) The tyrosine kinase inhibitor genistein blocks HIV-1 infection in primary human macrophages. Virus Res 123(2):178–189Google Scholar
  300. Struthers BJ (1981) Lysinoalanine: production, significance and control in preparation and use of soya and other food proteins. J Am Oil Chem Soc 58(3):501–503Google Scholar
  301. Su SJ, Chow NH, Kung ML, Hung TC, Chang KL (2003) Effects of soy isoflavones on apoptosis induction and G2-M arrest in human hepatoma cells involvement of caspase-3 activation, Bcl-2 and Bcl-XL downregulation, and Cdc2 kinase activity. Nutr Cancer 45(1):113–123Google Scholar
  302. Su SJ, Yeh TM, Lei HY, Chow NH (2000) The potential of soybean foods as a chemoprevention approach for human urinary tract cancer. Clin Cancer Res 6(1):230–236Google Scholar
  303. Su YC (1986) Sufu. In: Reddy NR, Pierson MD, Salunkhe DK (eds) Legume-based fermented foods. CRC Press, Boca Raton, pp 69–83Google Scholar
  304. Sugiyama Y, Sakurai Y, Hirota A (2010) Isolation of 2,4,4’-trihydroxydeoxybenzoin and 3’-hydroxydaidzein from soybean miso. Biosci Biotechnol Biochem 74(6):1293–1294Google Scholar
  305. Suthar AC, Banavalikar MM, Biyani MK (2001) Pharmacological activities of Genistein, an isoflavone from soy (Glycine max): part II–anti-cholesterol activity, effects on osteoporosis & menopausal symptoms. Indian J Exp Biol 39(6):520–525Google Scholar
  306. Tabibi H, Imani H, Hedayati M, Atabak S, Rahmani L (2010) Effects of soy consumption on serum lipids and apoproteins in peritoneal dialysis patients: a randomized controlled trial. Perit Dial Int 30(6):611–618Google Scholar
  307. Tachibana N, Iwaoka Y, Hirotsuka M, Horio F, Kohno M (2010) Beta-conglycinin lowers very-low-density lipoprotein-triglyceride levels by increasing adiponectin and insulin sensitivity in rats. Biosci Biotechnol Biochem 74(6):1250–1255Google Scholar
  308. Takahashi R, Ohmori R, Kiyose C, Momiyama Y, Ohsuzu F, Kondo K (2005) Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J Agric Food Chem 53(11):4578–4582Google Scholar
  309. Takahashi S, Hori K, Hokari M, Gotoh T, Sugiyama T (2010) Inhibition of human renin activity by saponins. Biomed Res 31(2):155–159Google Scholar
  310. Takahata Y, Ohnishi-Kameyama M, Furuta S, Takahashi M, Suda I (2001) Highly polymerized procyanidins in brown soybean seed coat with a high radical-scavenging activity. J Agric Food Chem 49(12):5843–5847Google Scholar
  311. Taku K, Lin N, Cai D, Hu J, Zhao X, Zhang Y, Wang P, Melby MK, Hooper L, Kurzer MS, Mizuno S, Ishimi Y, Watanabe S (2010a) Effects of soy isoflavone extract supplements on blood pressure in adult humans: systematic review and meta-analysis of randomized placebo-controlled trials. J Hypertens 28(10):1971–1982Google Scholar
  312. Taku K, Melby MK, Kurzer MS, Mizuno S, Watanabe S, Ishimi Y (2010b) Effects of soy isoflavone supplements on bone turnover markers in menopausal women: systematic review and meta-analysis of randomized controlled trials. Bone 47(2):413–423Google Scholar
  313. Taku K, Melby MK, Takebayashi J, Mizuno S, Ishimi Y, Omori T, Watanabe S (2010c) Effect of soy isoflavone extract supplements on bone mineral density in menopausal women: meta-analysis of randomized controlled trials. Asia Pac J Clin Nutr 19(1):33–42Google Scholar
  314. Taku K, Umegaki K, Sato Y, Taki Y, Endoh K, Watanabe S (2007) Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 85(4):1148–1156Google Scholar
  315. Tanaka S, Koizumi S, Makiuchi N, Aoyagi Y, Quivy E, Mitamura R, Kano T, Wakita D, Chamoto K, Kitamura H, Nishimura T (2011) The extract of Japanese soybean, Kurosengoku activates the production of IL-12 and IFN-γ by DC or NK1.1(+) cells in a TLR4- and TLR2-dependent manner. Cell Immunol 266(2):135–142Google Scholar
  316. Tang AL, Walker KZ, Wilcox G, Strauss BJ, Ashton JF, Stojanovska L (2010) Calcium absorption in Australian osteopenic post-menopausal women: an acute comparative study of fortified soymilk to cows’ milk. Asia Pac J Clin Nutr 19(2):243–249Google Scholar
  317. Taylor CK, Levy RM, Elliott JC, Burnett BP (2009) The effect of genistein aglycone on cancer and cancer risk: a review of in vitro, preclinical, and clinical studies. Nutr Rev 67(7):398–415Google Scholar
  318. Teixeira Damasceno NR, Apolinário E, Dias Flauzino F, Fernandes I, Abdalla DS (2007) Soy isoflavones reduce electronegative low-density lipoprotein (LDL(−)) and anti-LDL (−) autoantibodies in experimental atherosclerosis. Eur J Nutr 46(3):125–132Google Scholar
  319. Teixeira SR, Potter SM, Weigel R, Hannum S, Erdman JW Jr, Hasler CM (2000) Effects of feeding 4 levels of soy protein for 3 and 6 wk on blood lipids and apolipoproteins in moderately hypercholesterolemic men. Am J Clin Nutr 71(5):1077–1084Google Scholar
  320. Tepavcević V, Atanacković M, Miladinović J, Malencić D, Popović J, Cvejić J (2010) Isoflavone composition, total polyphenolic content, and antioxidant activity in soybeans of different origin. J Med Food 13(3):657–664Google Scholar
  321. Tong X, Li W, Qin LQ (2010) Meta-analysis of the relationship between soybean product consumption and gastric cancer. Zhonghua Yu Fang Yi Xue Za Zhi 44(3):215–220 (In Chinese)Google Scholar
  322. Tonstad S, Smerud K, Høie L (2002) A comparison of the effects of 2 doses of soy protein or casein on serum lipids, serum lipoproteins, and plasma total homocysteine in hypercholesterolemic subjects. Am J Clin Nutr 76(1):78–84Google Scholar
  323. Torre-Villalvazo I, Gonzalez F, Aguilar-Salinas CA, Tovar AR, Torres N (2009) Dietary soy protein reduces cardiac lipid accumulation and the ceramide concentration in high-fat diet-fed rats and ob/ob mice. J Nutr 139(12):2237–2243Google Scholar
  324. Torre-Villalvazo I, Tovar AR, Ramos-Barragán VE, Cerbón-Cervantes MA, Torres N (2008) Soy protein ameliorates metabolic abnormalities in liver and adipose tissue of rats fed a high fat diet. J Nutr 138(3):462–468Google Scholar
  325. Tovar AR, Murguía F, Cruz C, Hernández-Pando R, Aguilar-Salinas CA, Pedraza-Chaverri J, Correa-Rotter R, Torres N (2002) A soy protein diet alters hepatic lipid metabolism gene expression and reduces serum lipids and renal fibrogenic cytokines in rats with chronic nephrotic syndrome. J Nutr 132(9):2562–2569Google Scholar
  326. Tovar AR, Torre-Villalvazo I, Ochoa M, Elías AL, Ortíz V, Aguilar-Salinas CA, Torres N (2005) Soy protein reduces hepatic lipotoxicity in hyperinsulinemic obese Zucker fa/fa rats. J Lipid Res 46(9):1823–1832Google Scholar
  327. Tsai CY, Chen YH, Chien YW, Huang WH, Lin SH (2010a) Effect of soy saponin on the growth of human colon cancer cells. World J Gastroenterol 16(27):3371–3376Google Scholar
  328. Tsai JH, Chen SJ, Huang KL, Lin YC, Lee WJ, Lin CC, Lin WY (2010b) PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends. J Hazard Mater 179(1–3):237–243Google Scholar
  329. Tsoyi K, Park HB, Kim YM, Chung JI, Shin SC, Shim HJ, Lee WS, Seo HG, Lee JH, Chang KC, Kim HJ (2008) Protective effect of anthocyanins from black soybean seed coats on UVB-induced apoptotic cell death in vitro and in vivo. J Agric Food Chem 56(22):10600–10605Google Scholar
  330. U.S. Department of Agriculture, Agricultural Research Service (2010) USDA National Nutrient Database for Standard Reference, Release 23. Nutrient Data Laboratory home page. http://www.ars.usda.gov/ba/bhnrc/ndl
  331. Ullah MF, Ahmad A, Zubair H, Khan HY, Wang Z, Sarkar FH, Hadi SM (2010) Soy isoflavone genistein induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species. Mol Nutr Food Res [Epub ahead of print]Google Scholar
  332. Upmalis DH, Lobo R, Bradley L, Warren M, Cone FL, Lamia CA (2000) Vasomotor symptom relief by soy isoflavone extract tablets in postmenopausal women: a multicenter, double-blind, randomized, placebo-controlled study. Menopause 7(4):236–242Google Scholar
  333. Vardi A, Bosviel R, Rabiau N, Adjakly M, Satih S, Dechelotte P, Boiteux JP, Fontana L, Bignon YJ, Guy L, Bernard-Gallon DJ (2010) Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells. In Vivo 24(4):393–400Google Scholar
  334. Védrine N, Mathey J, Morand C, Brandolini M, Davicco MJ, Guy L, Rémésy C, Coxam V, Manach C (2006) One-month exposure to soy isoflavones did not induce the ability to produce equol in postmenopausal women. Eur J Clin Nutr 60(9):1039–1045Google Scholar
  335. Vela EM, Bowick GC, Herzog NK, Aronson JF (2008) Genistein treatment of cells inhibits arenavirus infection. Antivir Res 77(2):153–156Google Scholar
  336. Vela EM, Knostman KA, Mott JM, Warren RL, Garver JN, Vela LJ, Stammen RL (2010) Genistein, a general kinase inhibitor, as a potential antiviral for arenaviral hemorrhagic fever as described in the Pirital virus-Syrian golden hamster model. Antivir Res 87(3):318–328Google Scholar
  337. Verdrengh M, Jonsson IM, Holmdahl R, Tarkowski A (2003) Genistein as an anti-inflammatory agent. Inflamm Res 2003(52):341–346Google Scholar
  338. Verma DPS, Shoemaker RC (eds) (1996) Soybean: genetics, molecular biology and biotechnology. Biotechnology in Agriculture 14. CAB International, Wallingford, 270 ppGoogle Scholar
  339. Wang PS, Thompson J, Clemente TE, Van Gerpen JH (2010) Improving the fuel properties of soy biodiesel. Trans ASABE 53(5):1853–1858Google Scholar
  340. Wang BF, Wang JS, Lu JF, Kao TH, Chen BH (2009) Antiproliferation effect and mechanism of prostate cancer cell lines as affected by isoflavones from soybean cake. J Agric Food Chem 57(6):2221–2232Google Scholar
  341. Wang HL (1984) Tofu and tempeh as potential protein sources in the western diet. J Am Oil Chem Soc 61(3):528–534Google Scholar
  342. Wang HL, Hesseltine CW (1970) Sufu and Lao-Chao. J Agric Food Chem 18:572–575Google Scholar
  343. Wang RZ (1995) Sufu quality and ripening (postfermentation) control. J China Brew Ind 2:31–35 (In Chinese)Google Scholar
  344. Wang Y, Raffoul JJ, Che M, Doerge DR, Joiner MC, Kucuk O, Sarkar FH, Hillman GG (2006) Prostate cancer treatment is enhanced by genistein in vitro and in vivo in a syngeneic orthotopic tumor model. Radiat Res 166(1 Pt 1):73–80Google Scholar
  345. Wangen KE, Duncan AM, Xu X, Kurzer MS (2001) Soy isoflavones improve plasma lipids in normocholesterolemic and mildly hypercholesterolemic postmenopausal women. Am J Clin Nutr 73(2):225–231Google Scholar
  346. Ware JH, Wan XS, Rubin H, Schechter NM, Kennedy AR (1997) Soybean Bowman-Birk protease inhibitor is a highly effective inhibitor of human mast cell chymase. Arch Biochem Biophys 344(1):133–138Google Scholar
  347. Washburn S, Burke GL, Morgan T, Anthony M (1999) Effect of soy protein supplementation on serum lipoproteins, blood pressure, and menopausal symptoms in perimenopausal women. Menopause 6(1):7–13Google Scholar
  348. Weggemans M, Trautwein EA (2003) Relation between soy-associated isoflavones and LDL and HDL cholesterol concentrations in humans: a meta-analysis. Eur J Clin Nutr 57(8):940–946Google Scholar
  349. Wiseman H, Casey K, Clarke DB, Barnes KA, Bowey E (2002) Isoflavone aglycon and glucoconjugate content of high- and low-soy U.K. foods used in nutritional studies. J Agric Food Chem 50(6):1404–1410Google Scholar
  350. Wu J, Muir AD (2008) Isoflavone content and its potential contribution to the antihypertensive activity in soybean Angiotensin I converting enzyme inhibitory peptides. J Agric Food Chem 56(21):9899–9904Google Scholar
  351. Wu J, Wang X, Chiba H, Higuchi M, Nakatani T, Ezaki O, Cui H, Yamada K, Ishimi Y (2004a) Combined intervention of soy isoflavone and moderate exercise prevents body fat elevation and bone loss in ovariectomized mice. Metabolism 53(7):942–948Google Scholar
  352. Wu ML, Chang JC, Lai YH, Cheng SL, Chiou RY (2004b) Enhancement of tofu isoflavone recovery by pretreatment of soy milk with koji enzyme extract. J Agric Food Chem 52(15):4785–4790Google Scholar
  353. Wu Q, Wang M, Sciarappa WJ, Simon JE (2004c) LC/UV/ESI-MS analysis of isoflavones in Edamame and Tofu soybeans. J Agric Food Chem 52(10):2763–2769Google Scholar
  354. Xi Q, Cuesta R, Schneider RJ (2005) Regulation of translation by ribosome shunting through phosphotyrosine-dependent coupling of adenovirus protein 100 k to viral mRNAs. J Virol 79(9):5676–5683Google Scholar
  355. Xu B, Chang SK (2008a) Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. J Agric Food Chem 56(18):8365–8373Google Scholar
  356. Xu B, Chang SK (2008b) Characterization of phenolic substances and antioxidant properties of food soybeans grown in the North Dakota-Minnesota region. J Agric Food Chem 56(19):9102–9113Google Scholar
  357. Xu B, Chang SK (2008c) Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybeans as affected by thermal processing. J Agric Food Chem 56(16):7165–7175Google Scholar
  358. Xu B, Chang SK (2009) Isoflavones, Flavan-3-ols, phenolic acids, total phenolic profiles, and antioxidant capacities of soy milk as affected by ultrahigh-temperature and traditional processing methods. J Agric Food Chem 57(11):4706–4717Google Scholar
  359. Xu B, Chang SK, Liu Z, Yuan S, Zou Y, Tan Y (2010) Comparative studies on the chemical and cell-based antioxidant activities and antitumor cell proliferation properties of soy milk manufactured by conventional and commercial UHT methods. J Agric Food Chem 58(6):3558–3566Google Scholar
  360. Yan L, Spitznagel EL (2009) Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis. Am J Clin Nutr 89(4):1155–1163Google Scholar
  361. Yan L, Spitznagel EL, Bosland MC (2010) Soy consumption and colorectal cancer risk in humans: a meta-analysis. Cancer Epidem Biomar 19(1):148–158Google Scholar
  362. Yasuda M, Kobayashi A (1989) Preparation and characterization of Tofuyo (fermented soybean curd). In: Ang HG, Nga BH, Lim KK (eds) Trends in food biotechnology. Proceedings of the 7th World Congress of Food Science and Technology, Singapore, Oct 1987. Singapore Institute of Food Science and Technology, pp 82–86Google Scholar
  363. Yatagai C, Singu T, Maruyama M, Sumi H (2007) Genistein and its analogue enhanced tissue plasminogen activator activity in HeLa S3. Pathophysiol Haemost Thromb 36(6):298–304Google Scholar
  364. Ye X, Ng TB (2009) A trypsin-chymotrypsin inhibitor with antiproliferative activity from small glossy black soybeans. Planta Med 75(5):550–556Google Scholar
  365. Yeo SK, Liong MT (2010a) Angiotensin I-converting enzyme inhibitory activity and bioconversion of isoflavones by probiotics in soymilk supplemented with prebiotics. Int J Food Sci Nutr 61(2):161–181Google Scholar
  366. Yeo SK, Liong MT (2010b) Effect of prebiotics on viability and growth characteristics of probiotics in soymilk. J Sci Food Agric 90(2):267–275Google Scholar
  367. Yim JH, Lee OH, Choi UK, Kim YC (2009) Antinociceptive and anti-inflammatory effects of ethanolic extracts of Glycine max (L.) Merr and Rhynchosia nulubilis seeds. Int J Mo Sci 10(11):4742–4753Google Scholar
  368. Yuan S, Chang SK, Liu Z, Xu B (2008) Elimination of trypsin inhibitor activity and beany flavor in soy milk by consecutive blanching and ultrahigh-temperature (UHT) processing. J Agric Food Chem 56(17):7957–7963Google Scholar
  369. Zhan S, Ho SC (2005) Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr 81(2):397–408Google Scholar
  370. Zhang B, Cai L, Su M, Zhou XX, Huang LL, Chen CG, Gan RY, Chen RQ, Su YX (2009a) Relationship between dietary soy isoflavones and blood lipid levels in 40–65 year-olds in Guangzhou. Zhonghua Liu Xing Bing Xue Za Zhi 30(8):761–765 (In Chinese)Google Scholar
  371. Zhang EJ, Ng KM, Luo KQ (2007) Extraction and purification of isoflavones from soybeans and characterization of their estrogenic activities. J Agric Food Chem 55(17):6940–6950Google Scholar
  372. Zhang W, Popovich DG (2010) Group B oleanane triterpenoid extract containing soyasaponins I and III from soy flour induces apoptosis in Hep-G2 cells. J Agric Food Chem 58(9):5315–5319Google Scholar
  373. Zhang W, Teng SP, Popovich DG (2009b) Generation of group B soyasaponins I and III by hydrolysis. J Agric Food Chem 57(9):3620–3625Google Scholar
  374. Zhang X, Zhang M (2009) Protective role of dark soy sauce against acrylamide-induced neurotoxicity in rats by antioxidative activity. Toxicol Mech Methods 19(5):369–374Google Scholar
  375. Zhang YB, Zhang Y, Li LN, Zhao XY, Na XL (2010) Soy isoflavone and its effect to regulate hypothalamus and peripheral orexigenic gene expression in ovariectomized rats fed on a high-fat diet. Biomed Environ Sci 23(1):68–75Google Scholar
  376. Zhao H, Liang J, Li X, Yu H, Li X, Xiao R (2010) Folic acid and soybean isoflavone combined supplementation protects the post-neural tube closure defects of rodents induced by cyclophosphamide in vivo and in vitro. Neurotoxicol 31(2):180–187Google Scholar
  377. Zhou JR, Gugger ET, Tanaka T, Guo Y, Blackburn GL, Clinton SK (1999) Soybean phytochemicals inhibit the growth of transplantable human prostate carcinoma and tumor angiogenesis in mice. J Nutr 129(9):1628–1635Google Scholar
  378. Zhou JR, Mukherjee P, Gugger ET, Tanaka T, Blackburn GL, Clinton SK (1998) Inhibition of murine bladder tumorigenesis by soy isoflavones via alterations in the cell cycle, apoptosis, and angiogenesis. Cancer Res 58(22):5231–5238Google Scholar
  379. Zhao R, Bruning E, Rossetti D, Starcher B, Seiberg M, Iotsova-Stone V (2009) Extracts from Glycine max (soybean) induce elastin synthesis and inhibit elastase activity. Exp Dermatol 18(10):883–886Google Scholar
  380. Zhou JR, Yu L, Zhong Y, Blackburn GL (2003) Soy phytochemicals and tea bioactive components synergistically inhibit androgen-sensitive human prostate tumors in mice. J Nutr 133(2):516–521Google Scholar
  381. Zhou JR, Yu L, Zhong Y, Nassr RL, Franke AA, Gaston SM, Blackburn GL (2002) Inhibition of orthotopic growth and metastasis of androgen-sensitive human prostate tumors in mice by bioactive soybean components. Prostate 53(2):143–153Google Scholar
  382. Zhu XL, Watanabe K, Shiraishi K, Ueki T, Noda Y, Matsui T, Matsumoto K (2008) Identification of ACE-inhibitory peptides in salt-free soy sauce that are transportable across caco-2 cell monolayers. Peptides 29(3):338–344Google Scholar
  383. Zhuo XG, Melby MK, Watanabe S (2004) Soy isoflavone intake lowers serum LDL cholesterol: a meta-analysis of 8 randomized controlled trials in humans. J Nutr 134(9):2395–2400Google Scholar
  384. Zimmermann MC, Tilghman SL, Boué SM, Salvo VA, Elliott S, Williams KY, Skripnikova EV, Ashe H, Payton-Stewart F, Vanhoy-Rhodes L, Fonseca JP, Corbitt C, Collins-Burow BM, Howell MH, Lacey M, Shih BY, Carter-Wientjes C, Cleveland TE, McLachlan JA, Wiese TE, Beckman BS, Burow ME (2010) Glyceollin I, a novel antiestrogenic phytoalexin isolated from activated soy. J Pharmacol Exp Ther 332(1):35–45Google Scholar
  385. Zou H, Zhan S, Cao K (2008) Apoptotic activity of genistein on human lung adenocarcinoma SPC-A-1 cells and preliminary exploration of its mechanisms using microarray. Biomed Pharmacother 62(9):583–589Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • T. K. Lim
    • 1
  1. 1.ChisholmAustralia

Personalised recommendations