The Chemical Reactivity of Fullerenes and Endohedral Fullerenes: A Theoretical Perspective

Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 5)

Abstract

We report here a review of our recent efforts at understanding and predicting reactivity and regioselectivity of endohedral (metallo)fullerenes and their parent free fullerenes. The effect of encapsulation of trimetallic nitrides or noble gas atoms/dimers was shown to have a profound impact on the stability and reactivity of fullerene compounds. It is not just the encapsulation, but in particular the nature of the species that is encapsulated that determines how (un)reactive the fullerene becomes. These findings have important consequences for future applications of (metallo)fullerenes in biomedicine and (nano)technology.

References

  1. Agnoli AL, Jungmann D, Lochner B (1987) Neurosurg Rev 10:25–29CrossRefGoogle Scholar
  2. Aihara J-i (2001) Chem Phys Lett 343:465–469CrossRefGoogle Scholar
  3. Akasaka T, Nagase S (2002) Endofullerenes: a new family of carbon clusters. Kluwer Academic, DordrechtGoogle Scholar
  4. Baerends EJ, Autschbach J, Bashford D, Berger JA, Bérces A, Bickelhaupt FM, Bo C, de Boeij PL, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, van Faassen M, Fan L, Fischer TH, Fonseca Guerra C, Giammona A, Ghysels A, van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kadantsev ES, van Kessel G, Klooster R, Kootstra F, Krykunov MV, van Lenthe E, Louwen JN, McCormack DA, Michalak A, Mitoraj M, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodríguez JI, Romaniello P, Ros P, Schipper PRT, Schreckenbach G, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski T.A, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL, Ziegler T (2009) ADF 2009.01. SCM, AmsterdamGoogle Scholar
  5. Beavers CM, Chaur MN, Olmstead MM, Echegoyen L, Balch AL (2009) J Am Chem Soc 131:11519–11524CrossRefGoogle Scholar
  6. Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  7. Cai T, Ge ZX, Iezzi EB, Glass TE, Harich K, Gibson HW, Dorn HC (2005) Chem Commun 3594–3596Google Scholar
  8. Cai T, Xu L, Anderson MR, Ge Z, Zuo T, Wang X, Olmstead MM, Balch AL, Gibson HW, Dorn HC (2006) J Am Chem Soc 128:8581–8589CrossRefGoogle Scholar
  9. Cai T, Xu L, Gibson HW, Dorn HC, Chancellor CJ, Olmstead MM, Balch AL (2007) J Am Chem Soc 129:10795–10800CrossRefGoogle Scholar
  10. Cai T, Xu L, Shu C, Champion HA, Reid JE, Anklin C, Anderson MR, Gibson HW, Dorn HC (2008) J Am Chem Soc 130:2136–2137CrossRefGoogle Scholar
  11. Campanera JM, Bo C, Olmstead MM, Balch AL, Poblet JM (2002) J Phys Chem A 106:12356–12364CrossRefGoogle Scholar
  12. Campanera JM, Bo C, Poblet JM (2005) Angew Chem Int Ed 44:7230–7233CrossRefGoogle Scholar
  13. Campanera JM, Bo C, Poblet JM (2006) J Org Chem 71:46–54CrossRefGoogle Scholar
  14. Cao B, Nikawa H, Nakahodo T, Tsuchiya T, Maeda Y, Akasaka T, Sawa H, Slanina Z, Mizorogi N, Nagase S (2008) J Am Chem Soc 130:983–989CrossRefGoogle Scholar
  15. Cardona CM, Kitaygorodskiy A, Echegoyen L (2005a) J Am Chem Soc 127:10448–10453CrossRefGoogle Scholar
  16. Cardona CM, Kitaygorodskiy A, Ortiz A, Herranz MA, Echegoyen L (2005b) J Org Chem 70:5092–5097CrossRefGoogle Scholar
  17. Cardona CM, Elliott B, Echegoyen L (2006) J Am Chem Soc 128:6480–6485CrossRefGoogle Scholar
  18. Chai Y, Guo T, Jin C, Haufler RE, Chibante LPF, Fure J, Wang L, Alford JM, Smalley RE (1991) J Phys Chem 95:7564–7568CrossRefGoogle Scholar
  19. Chaur MN, Melin F, Athans AJ, Elliott B, Walker BC, Holloway K, Echegoyen L (2008) Chem Commun 2665Google Scholar
  20. Chaur MN, Melin F, Ortiz AL, Echegoyen L (2009) Angew Chem Int Ed 48:7514–7538CrossRefGoogle Scholar
  21. Chen N, Fan LZ, Tan K, Wu YQ, Shu CY, Lu X, Wang C-R (2007a) J Phys Chem C 111:11823–11828CrossRefGoogle Scholar
  22. Chen N, Zhang E-Y, Tan K, Wang C-R, Lu X (2007b) Org Lett 9:2011–2013CrossRefGoogle Scholar
  23. Diener MD, Alford JM, Kennel SJ, Mirzadeh S (2007) J Am Chem Soc 129:5131–5138CrossRefGoogle Scholar
  24. Dunsch L, Yang S (2007) Small 3:1298–1320CrossRefGoogle Scholar
  25. Echegoyen L, Chancellor CJ, Cardona CM, Elliott B, Rivera J, Olmstead MM, Balch AL (2006) Chem Commun 2653–2655Google Scholar
  26. Guha S, Nakamoto K (2005) Coord Chem Rev 249:1111–1132CrossRefGoogle Scholar
  27. Guldi DM, Feng L, Radhakrishnan SG, Nikawa H, Yamada M, Mizorogi N, Tsuchiya T, Akasaka T, Nagase S, Herranz MA, Martín N (2010) J Am Chem Soc 1332:9078–9086CrossRefGoogle Scholar
  28. Haddon RC (2001) J Phys Chem A 105:4164–4165CrossRefGoogle Scholar
  29. Haddon RC, Chow SY (1998) J Am Chem Soc 120:10494–10496CrossRefGoogle Scholar
  30. Harneit W (2002) Phys Rev A 65:032322CrossRefGoogle Scholar
  31. Heath JR, O’Brien SC, Zhang Q, Liu Y, Curl RF, Kroto HW, Tittel FK, Smalley RE (1985) J Am Chem Soc 107:7779–7780CrossRefGoogle Scholar
  32. Hu H, Cheng W-D, Huang S-H, Xie Z, Zhang H (2008) J Theor Comput Chem 7:737–749CrossRefGoogle Scholar
  33. Iiduka Y, Ikenaga O, Sakuraba A, Wakahara T, Tsuchiya T, Maeda Y, Nakahodo T, Akasaka T, Kako M, Mizorogi N, Nagase S (2005) J Am Chem Soc 127:9956–9957CrossRefGoogle Scholar
  34. Kobayashi K, Nagase S, Yoshida M, Osawa E (1997) J Am Chem Soc 119:12693–12694CrossRefGoogle Scholar
  35. Krapp A, Frenking G (2007) Chem Eur J 13:8256–8270CrossRefGoogle Scholar
  36. Krause M, Wong J, Dunsch L (2005) Chem Eur J 11:706–711CrossRefGoogle Scholar
  37. Kroto HW (1987) Nature 329:529–531CrossRefGoogle Scholar
  38. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163CrossRefGoogle Scholar
  39. Laus S, Sitharaman B, Tóth É, Bolskar RD, Helm L, Wilson LJ, Merbach AE (2007) J Phys Chem C 111:5633–5639CrossRefGoogle Scholar
  40. Lee HM, Olmstead MM, Iezzi E, Duchamp JC, Dorn HC, Balch AL (2002) J Am Chem Soc 124:3494–3495CrossRefGoogle Scholar
  41. Lu X, Nikawa H, Nakahodo T, Tsuchiya T, Ishitsuka MO, Maeda Y, Akasaka T, Toki M, Sawa H, Slanina Z, Mizorogi N, Nagase S (2008) J Am Chem Soc 130:9129–9136CrossRefGoogle Scholar
  42. Lu X, Nikawa H, Feng L, Tsuchiya T, Maeda Y, Akasaka T, Mizorogi N, Slanina Z, Nagase S (2009) J Am Chem Soc 131:12066–12067CrossRefGoogle Scholar
  43. Martín N (2006) Chem Commun 2093–2104Google Scholar
  44. Mayer I (1983) Chem Phys Lett 97:270–274CrossRefGoogle Scholar
  45. Osuna S, Swart M, Campanera JM, Poblet JM, Solà M (2008) J Am Chem Soc 130:6206–6214CrossRefGoogle Scholar
  46. Osuna S, Swart M, Solà M (2009a) J Am Chem Soc 131:129–139CrossRefGoogle Scholar
  47. Osuna S, Swart M, Solà M (2009b) Chem Eur J 15:13111–13123CrossRefGoogle Scholar
  48. Parr RG, Chattaraj PK (1991) J Am Chem Soc 113:1854–1855CrossRefGoogle Scholar
  49. Pearson RG (1997) Chemical Hardness: applications from molecules to solids. Wiley-VCH, OxfordCrossRefGoogle Scholar
  50. Pearson RG (1999) J Chem Educ 76:267–275CrossRefGoogle Scholar
  51. Perdew JP (1986) Phys Rev B 33:8822–8824, Erratum: ibid. 34, 7406–7406 (1986)CrossRefGoogle Scholar
  52. Pietzak B, Weidinger K-P, Dinse A, Hirsch A (2002) In: Akasaka T, Nagase S (eds) Endofullerenes: a new family of carbon clusters. Kluwer Academic, Amsterdam, pp 13–66Google Scholar
  53. Popov AA, Dunsch L (2007) J Am Chem Soc 129:11835–11849CrossRefGoogle Scholar
  54. Popov AA, Dunsch L (2009) Chem Eur J 15:9707–9729CrossRefGoogle Scholar
  55. Popov AA, Krause M, Yang S, Wong J, Dunsch L (2007) J Phys Chem B 111:3363–3369CrossRefGoogle Scholar
  56. Rodríguez-Fortea A, Campanera JM, Cardona CM, Echegoyen L, Poblet JM (2006) Angew Chem Int Ed 45:8176–8180CrossRefGoogle Scholar
  57. Schmalz TG, Seitz WA, Klein DJ, Hite GE (1988) J Am Chem Soc 110:1113–1127CrossRefGoogle Scholar
  58. Shultz MD, Duchamp JC, Wilson JD, Shu C-Y, Ge J, Zhang J, Gibson HW, Fillmore HL, Hirsch JI, Dorn HC, Fatouros PP (2010) J Am Chem Soc 132:4980–4981CrossRefGoogle Scholar
  59. Stevenson S, Fowler PW, Heine T, Duchamp JC, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn HC (2000) Nature 408:427–428CrossRefGoogle Scholar
  60. Stevenson S, Stephen RR, Amos TM, Cadorette VR, Reid JE, Phillips JP (2005) J Am Chem Soc 127:12776–12777CrossRefGoogle Scholar
  61. Swart M, Bickelhaupt FM (2006) Int J Quantum Chem 106:2536–2544CrossRefGoogle Scholar
  62. Swart M, Bickelhaupt FM (2008) J Comput Chem 29:724–734CrossRefGoogle Scholar
  63. Swart M, Snijders JG (2003) Theor Chem Acc 110:34–41, Erratum, (2004) Theor Chem Acc 111:56CrossRefGoogle Scholar
  64. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967CrossRefGoogle Scholar
  65. Tellgmann R, Krawez N, Lin S-H, Hertel IV, Campbell EEB (1996) Nature 382:407–408CrossRefGoogle Scholar
  66. Thilgen C, Diederich F (2006) Chem Rev 106:5049–5135CrossRefGoogle Scholar
  67. Torrent-Sucarrat M, Luis JM, Duran M, Solà M (2001) J Am Chem Soc 123:7951–7952CrossRefGoogle Scholar
  68. Valencia R, Rodríguez-Fortea A, Poblet JM (2007) Chem Commun 4161–4163Google Scholar
  69. Valencia R, Rodríguez-Fortea A, Clotet A, de Graaf C, Chaur MN, Echegoyen L, Poblet JM (2009) Chem Eur J 15:10997–11009CrossRefGoogle Scholar
  70. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610CrossRefGoogle Scholar
  71. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211CrossRefGoogle Scholar
  72. Wang G-W, Saunders M, Cross RJ (2001) J Am Chem Soc 123:256–259CrossRefGoogle Scholar
  73. Whitehouse DB, Buckingham AD (1993) Chem Phys Lett 207:332–338CrossRefGoogle Scholar
  74. Yamada M, Okamura M, Sato S, Someya CI, Mizorogi N, Tsuchiya T, Akasaka T, Kato T, Nagase S (2009) Chem Eur J 15:10533–10542CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institut de Química Computacional and Departament de QuímicaUniversitat de GironaGironaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations