Green Solvents Fundamental and Industrial Applications

  • Shadpour MallakpourEmail author
  • Zahra Rafiee


The toxicity and volatile nature of many organic solvents, widely utilized in huge amounts for organic reactions, have posed a serious threat to the environment. Thus, the principles of green chemistry direct to use safer and environmentally friendly solvents. The alternative solvent systems such as water, supercritical fluids, ionic liquids, and fluorinated solvents are employed for a wide range of chemical applications including synthetic, extractions, and materials chemistry. This chapter provides an overview about the use of these alternative solvents in various academic and industrial fields.


Atom Transfer Radical Polymerization Short Reaction Time Aryl Halide Reversible Addition Fragmentation Chain Transfer Aldol Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to express our gratitude to the Research Affairs Division Isfahan University of Technology (IUT) for financial support. Further financial supports from National Elite Foundation (NEF) and Center of Excellency in Sensors and Green Research (IUT) are also gratefully acknowledged.


  1. 1.
    Brennecke JF, Maginn EJ (2001) Ionic liquids: innovative fluids for chemical processing. AIChE J 47:2384CrossRefGoogle Scholar
  2. 2.
    Sheldon R (2001) Catalytic reactions in ionic liquids. Chem. Comm. (Camb) 2399Google Scholar
  3. 3.
    Lancaster M (2002) Green chemistry: an introductory text. Royal Society of Chemistry, CambridgeGoogle Scholar
  4. 4.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New YorkGoogle Scholar
  5. 5.
    Kerton FM (2009) Alternative solvents for green chemistry. RSC publishing, CambridgeGoogle Scholar
  6. 6.
    Mikami K (2005) Green reaction media in organic synthesis. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  7. 7.
    Adams DJ, Dyson PJ, Taverner SJ (2004) Chemistry in alternative reaction media. Wiley, ChichesterGoogle Scholar
  8. 8.
    Nelson WM (2003) Green solvents for chemistry: perspective and practice. Oxford University Press, OxfordGoogle Scholar
  9. 9.
    Martins MAP, Frizzo CP, Moreira DN, Buriol L, Machado P (2009) Solvent-free heterocyclic synthesis. Chem Rev 109:4140–4182CrossRefGoogle Scholar
  10. 10.
    Nagendrappa G (2002) Organic synthesis under solvent-free condition: an environmentally benign procedure – I. Resonance 7:59–68CrossRefGoogle Scholar
  11. 11.
    Tanaka K (2003) Solvent-free organic synthesis. Wiley-VHC, WeinheimCrossRefGoogle Scholar
  12. 12.
    Varma RS (1999) Solvent-free organic syntheses. Green Chem 1:43–55CrossRefGoogle Scholar
  13. 13.
    Toda F, Tanaka K (2000) Solvent-free organic synthesis. Chem Rev 100:1025–1074CrossRefGoogle Scholar
  14. 14.
    Garay AL, Pichon A, James SL (2007) Solvent-free synthesis of metal complexes. Chem Soc Rev 36:846–855CrossRefGoogle Scholar
  15. 15.
    Walsh PJ, Li H, de Parrodi CA (2007) A green chemistry approach to asymmetric catalysis: solvent-free and highly concentrated reactions. Chem Rev 107:2503–2545CrossRefGoogle Scholar
  16. 16.
    Cave GWV, Raston CL, Scott JL (2001) Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility. Chem Commun 21:2159–2169CrossRefGoogle Scholar
  17. 17.
    Dunk B, Jachuck R (2000) A novel continuous reactor for UV irradiated reactions. Green Chem 2:G13–G14CrossRefGoogle Scholar
  18. 18.
    Waddell DC, Mack J (2009) An environmentally benign solvent-free Tishchenko reaction. Green Chem 11:79–82CrossRefGoogle Scholar
  19. 19.
    Rothenberg G, Downie AP, Raston CL, Scott JL (2001) Understanding solid/solid organic reactions. J Am Chem Soc 123:8701–8708CrossRefGoogle Scholar
  20. 20.
    Wegenhart BL, Abu-Omar MM (2010) A solvent-free method for making dioxolane and dioxane from the biorenewables glycerol and furfural catalyzed by oxorhenium(V) oxazoline. Inorg Chem 49:4741–4743CrossRefGoogle Scholar
  21. 21.
    Wang B, Zhang H, Jing X, Zhu J (2010) Solvent free catalytic synthesis of 2-methylallylidene diacetate using cation-exchange resin. Catal Commun 11:753–757CrossRefGoogle Scholar
  22. 22.
    Bao K, Fan A, Dai Y, Zhang L, Zhang W, Cheng M, Yao X (2009) Selective demethylation and debenzylation of aryl ethers by magnesium iodide under solvent-free conditions and its application to the total synthesis of natural products. Org Biomol Chem 7:5084–5090CrossRefGoogle Scholar
  23. 23.
    Waddell DC, Thiel I, Clark TD, Marcum ST, Mack J (2010) Making kinetic and thermodynamic enolates via solvent-free high speed ball milling. Green Chem 12:209–211CrossRefGoogle Scholar
  24. 24.
    Gora M, Kozik B, Jamrozy K, Łuczynski MK, Brzuzan P, Wozny M (2009) Solvent-free condensations of ketones with malononitrile catalysed by methanesulfonic acid/morpholine system. Green Chem 11:863–867CrossRefGoogle Scholar
  25. 25.
    Trotzki R, Hoffmann MM, Ondruschka B (2008) Studies on the solvent-free and waste-free Knoevenagel condensation. Green Chem 10:767–772CrossRefGoogle Scholar
  26. 26.
    Sudheesh N, Sharma SK, Shukla RS (2010) Chitosan as an eco-friendly solid base catalyst for the solvent-free synthesis of jasminaldehyde. J Mol Catal A Chem 321:77–82CrossRefGoogle Scholar
  27. 27.
    Madhav JV, Reddy YT, Reddy PN, Reddy MN, Kuarm S, Crooks PA, Rajitha B (2009) Cellulose sulfuric acid: an efficient biodegradable and recyclable solid acid catalyst for the one-pot synthesis of aryl-14H-dibenzo[a.j]xanthenes under solvent-free conditions. J Mol Catal A Chem 304:85–87CrossRefGoogle Scholar
  28. 28.
    Banon-Caballero A, Guillena G, Najera C (2010) Solvent-free direct enantioselective aldol reaction using polystyrene-supported N-sulfonyl-(R a)-binam-D-prolinamide as a catalyst. Green Chem 12:1599–1606CrossRefGoogle Scholar
  29. 29.
    Thorwirth R, Stolle A, Ondruschka B (2010) Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill. Green Chem 12:985–991CrossRefGoogle Scholar
  30. 30.
    Fulmer DA, Shearouse WC, Medonza ST, Mack J (2009) Solvent-free Sonogashira coupling reaction via high speed ball milling. Green Chem 11:1821–1825CrossRefGoogle Scholar
  31. 31.
    Kniese M, Meier MAR (2010) A simple approach to reduce the environmental impact of olefin metathesis reactions: a green and renewable solvent compared to solvent-free reactions. Green Chem 12:169–173CrossRefGoogle Scholar
  32. 32.
    Huertas D, Florscher M, Dragojlovic V (2009) Solvent-free Diels-Alder reactions of in situ generated cyclopentadiene. Green Chem 11:91–95CrossRefGoogle Scholar
  33. 33.
    Bellezza F, Cipiciani A, Costantino U, Fringuelli F, Orru M, Piermatti O, Pizzo F (2010) Aza-Diels-Alder reaction of Danishefsky’s diene with immines catalyzed by porous α-zirconium hydrogen phosphate and SDS under solvent-free conditions. Catal Today 152:61–65CrossRefGoogle Scholar
  34. 34.
    Ma X, Zhou Y, Zhang J, Zhu A, Jiang T, Han B (2008) Solvent-free Heck reaction catalyzed by a recyclable Pd catalyst supported on SBA-15 via an ionic liquid. Green Chem 10:59–66CrossRefGoogle Scholar
  35. 35.
    Yue CB, Yi TF, Zhu CB, Liu G (2009) Mannich reaction catalyzed by a novel catalyst under solvent-free conditions. J Ind Eng Chem 15:653–656Google Scholar
  36. 36.
    Wang ZJ, Zhou HF, Wang TL, He YM, Fan QH (2009) Highly enantioselective hydrogenation of quinolines under solvent-free or highly concentrated conditions. Green Chem 11:767–769CrossRefGoogle Scholar
  37. 37.
    Chang F, Kim H, Lee B, Park S, Park J (2010) Highly efficient solvent-free catalytic hydrogenation of solid alkenes and nitro-aromatics using Pd nanoparticles entrapped in aluminum oxy-hydroxide. Tetrahedron Lett 51:4250–4252CrossRefGoogle Scholar
  38. 38.
    Gang L, Xinzong L, Eli W (2007) Solvent-free esterification catalyzed by surfactant-combined catalysts at room temperature. New J Chem 31:348–351CrossRefGoogle Scholar
  39. 39.
    Jida M, Deprez-Poulain R, Malaquin S, Roussel P, Agbossou-Niedercorn F, Deprez B, Laconde G (2010) Solvent-free microwave-assisted Meyers’ lactamization. Green Chem 12:961–964CrossRefGoogle Scholar
  40. 40.
    Zhao Y, Li J, Li C, Yin K, Ye D, Jia X (2010) PTSA-catalyzed green synthesis of 1,3, 5-triarylbenzene under solvent-free conditions. Green Chem 12:1370–1372CrossRefGoogle Scholar
  41. 41.
    Monnereau L, Semeril D, Matt D (2010) Calix[4]arene-diphosphite rhodium complexes in solvent-free hydroaminovinylation of olefins. Green Chem 12:1670–1673CrossRefGoogle Scholar
  42. 42.
    Wang T, Ma R, Liu L, Zhan Z (2010) Solvent-free solid acid-catalyzed nucleophilic substitution of propargylic alcohols: a green approach for the synthesis of 1,4-diynes. Green Chem 12:1576–1579CrossRefGoogle Scholar
  43. 43.
    Wang D, Li J, Li N, Gao T, Hou S, Chen B (2010) An efficient approach to homocoupling of terminal alkynes: solvent-free synthesis of 1,3-diynes using catalytic Cu(II) and base. Green Chem 12:45–48CrossRefGoogle Scholar
  44. 44.
    Epane G, Laguerre JC, Wadouachi A, Marek D (2010) Microwave-assisted conversion of D-glucose into lactic acid under solvent-free conditions. Green Chem 12:502–506CrossRefGoogle Scholar
  45. 45.
    Patil PR, Kartha KPR (2009) Solvent-free synthesis of thioglycosides by ball milling. Green Chem 11:953–956CrossRefGoogle Scholar
  46. 46.
    Favrelle A, Bonnet V, Avondo C, Aubry F, Djedaïni-Pilard F, Sarazin C (2010) Lipase-catalyzed synthesis and characterization of novel lipidyl-cyclodextrins in solvent free medium. J Mol Catal B Enzym 66:224–227CrossRefGoogle Scholar
  47. 47.
    Wang C, Zhao W, Li H, Guo L (2009) Solvent-free synthesis of unsaturated ketones by the Saucy-Marbet reaction using simple ammonium ionic liquid as a catalyst. Green Chem 11:843–847CrossRefGoogle Scholar
  48. 48.
    Mao W, Ma H, Wang B (2009) A clean method for solvent-free nitration of toluene over sulfated titania promoted by ceria catalysts. J Hazard Mater 167:707–712CrossRefGoogle Scholar
  49. 49.
    Gao J, He LN, Miao CX, Chanfreau S (2010) Chemical fixation of CO2: efficient synthesis of quinazoline-2,4(1H, 3H)-diones catalyzed by guanidines under solvent-free conditions. Tetrahedron 66:4063–4067CrossRefGoogle Scholar
  50. 50.
    Fu YL, Huang W, Li CL, Wang LY, Wei YS, Huang Y, Zhang XH, Wen ZY, Zhang ZX (2009) Monomethine cyanine dyes with an indole nucleus: microwave-assisted solvent-free synthesis, spectral properties and theoretical studies. Dyes Pigments 82:409–415CrossRefGoogle Scholar
  51. 51.
    Tyagi B, Mishra MK, Jasra RV (2010) Solvent free synthesis of acetyl salicylic acid over nano-crystalline sulfated zirconia solid acid catalyst. J Mol Catal A Chem 317:41–45CrossRefGoogle Scholar
  52. 52.
    Matsumoto K, Yamaguchi T, Katsuki T (2008) Asymmetric oxidation of sulfides under solvent-free or highly concentrated conditions. Chem Commun 1704–1706Google Scholar
  53. 53.
    Figiel PJ, Kopylovich MN, Lasri J, Guedes da Silva MFC, Frausto da Silva JJR, Pombeiro AJL (2010) Solvent-free microwave-assisted peroxidative oxidation of secondary alcohols to the corresponding ketones catalyzed by copper(II) 2,4-alkoxy-1,3,5-triazapentadienato complexes. Chem Commun 46:2766–2768CrossRefGoogle Scholar
  54. 54.
    Wang H, Deng SX, Shen ZR, Wang JG, Ding DT, Chen TH (2009) Facile preparation of Pd/organoclay catalysts with high performance in solvent-free aerobic selective oxidation of benzyl alcohol. Green Chem 11:1499–1502CrossRefGoogle Scholar
  55. 55.
    Ni J, Yu WJ, He L, Sun H, Cao Y, He HY, Fan KN (2009) A green and efficient oxidation of alcohols by supported gold catalysts using aqueous H2O2 under organic solvent-free conditions. Green Chem 11:756–759CrossRefGoogle Scholar
  56. 56.
    Zhang J, Wang Z, Wang Y, Wan C, Zheng X, Wang Z (2009) A metal-free catalytic system for the oxidation of benzylic methylenes and primary amines under solvent-free conditions. Green Chem 11:1973–1978CrossRefGoogle Scholar
  57. 57.
    Dimitratos N, Lopez-Sanchez JA, Morgan D, Carley AF, Tiruvalam R, Kiely CJ, Bethell D, Hutchings GJ (2009) Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilization. Phys Chem Phys 11:5142–5153CrossRefGoogle Scholar
  58. 58.
    Liu G, Hou M, Song J, Zhang Z, Wu T, Han B (2010) Ni2+-containing ionic liquid immobilized on silica: effective catalyst for styrene oxidation with H2O2 at solvent-free condition. J Mol Catal A Chem 316:90–94CrossRefGoogle Scholar
  59. 59.
    Wang C, Wang G, Mao J, Yao Z, Li H (2010) Metal and solvent-free oxidation of α-isophorone to ketoisophorone by molecular oxygen. Catal Commun 11:758–762CrossRefGoogle Scholar
  60. 60.
    Choudhary VR, Dumbre DK (2009) Magnesium oxide supported nano-gold: a highly active catalyst for solvent-free oxidation of benzyl alcohol to benzaldehyde by TBHP. Catal Commun 10:1738–1742CrossRefGoogle Scholar
  61. 61.
    Kirumakki S, Samarajeewa S, Harwell R, Mukherjee A, Herber RH, Clearfield A (2008) Sn(IV) phosphonates as catalysts in solvent-free Baeyer-Villiger oxidations using H2O2. Chem Commun 5556–5558Google Scholar
  62. 62.
    Szuppa T, Stolle A, Ondruschka B, Hopfe W (2010) Solvent-free dehydrogenation of γ-terpinene in a ball mill: investigation of reaction parameters. Green Chem 12:1288–1294CrossRefGoogle Scholar
  63. 63.
    Pham PD, Bertus P, Legoupy S (2009) Solvent-free direct reductive amination by catalytic use of an organotin reagent incorporated on an ionic liquid. Chem Commun 6207–6209Google Scholar
  64. 64.
    Longhi K, Moreira DN, Marzari MRB, Floss VM, Bonacorso HG, Zanatta N, Martins MAP (2010) An efficient solvent-free synthesis of NH-pyrazoles from β-dimethylaminovinylketones and hydrazine on grinding. Tetrahedron Lett 51:3193–3196CrossRefGoogle Scholar
  65. 65.
    Rafiee E, Eavani S, Rashidzadeh S, Joshaghani M (2009) Silica supported 12-tungstophosphoric acid catalysts for synthesis of 1,4-dihydropyridines under solvent-free conditions. Inorg Chim Acta 362:3555–3562CrossRefGoogle Scholar
  66. 66.
    Zhang J-X, Zheng Y-P, Lan L, Mo S, Yu P-Y, Shi W, Wang R-M (2009) Direct synthesis of solvent-free multiwall carbon nanotubes/silica nonionic nanofluid hybrid material. ACS Nano 3:2185–2190CrossRefGoogle Scholar
  67. 67.
    Pol VG, Daemen LL, Vogel S, Chertkov G (2010) Solvent-free fabrication of ferromagnetic Fe3O4 octahedra. Ind Eng Chem Res 49:920–924CrossRefGoogle Scholar
  68. 68.
    Pol VG, Thiyagarajan P, Calderon Moreno JM, Popa M (2009) Solvent-free fabrication of rare LaCO3OH luminescent superstructures. Inorg Chem 48:6417–6424CrossRefGoogle Scholar
  69. 69.
    Tsekova DS, Saez JA, Escuder B, Miravet JF (2009) Solvent-free construction of self-assembled 1D nanostructures from low-molecular-weight organogelators: sublimation vs. gelation. Soft Matter 5:3727–3735CrossRefGoogle Scholar
  70. 70.
    Li S, Yan W, Zhang W (2009) Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem 11:1618–1626CrossRefGoogle Scholar
  71. 71.
    Atkinson MBJ, Bucar DK, Sokolov AN, Friscic T, Robinson CN, Bilal MY, Sinada NG, Chevannes A, MacGillivray LR (2008) General application of mechanochemistry to templated solid-state reactivity: rapid and solvent-free access to crystalline supermolecules. Chem Commun 5713–5715Google Scholar
  72. 72.
    Ji G, Gong Z, Zhu W, Zheng M, Liao S, Shen K, Liu J, Cao J (2009) Simply synthesis of Co3O4 nanowire arrays using a solvent-free method. J Alloys Comp 476:579–583CrossRefGoogle Scholar
  73. 73.
    Wang X, He L, He Y, Zhang J, Su CY (2009) Solvent-free synthesis of a Pd(II) coordination networked complex as reusable catalyst based on 3,5-bis(diphenylphosphino)benzoic acid. Inorg Chim Acta 362:3513–3518CrossRefGoogle Scholar
  74. 74.
    Chmura AJ, Davidson MG, Frankis CJ, Jones MD, Lunn MD (2008) Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide. Chem Commun 1293–1295Google Scholar
  75. 75.
    Kumar Saha T, Rajashekhar B, Gowda RR, Ramkumar V, Chakraborty D (2010) Bis(imino)phenoxide complexes of zirconium: synthesis, structural characterization and solvent-free ring-opening polymerization of cyclic esters and lactides. Dalton Trans 39:5091–5093CrossRefGoogle Scholar
  76. 76.
    Raynaud J, Ottou WN, Gnanou Y, Taton D (2010) Metal-free and solvent-free access to α, ω-heterodifunctionalized poly(propylene oxide)s by N-heterocyclic carbene-induced ring opening polymerization. Chem Commun 46:3203–3205CrossRefGoogle Scholar
  77. 77.
    Horchani H, Chaabouni M, Gargouri Y, Sayari A (2010) Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: optimization by response surface methodology. Carbohydr Polym 79:466–474CrossRefGoogle Scholar
  78. 78.
    Lubineau A, Augé J (1999) Water as solvent in organic synthesis. Springer, BerlinGoogle Scholar
  79. 79.
    Li CJ (1999) Organic reactions in aqueous media-with a focus on carbon-carbon bond formation. Chem Rev 93:2023–2035CrossRefGoogle Scholar
  80. 80.
    Li CJ, Chan TH (2007) Comprehensive organic reactions in aqueous media. Wiley-Interscience, HobokenCrossRefGoogle Scholar
  81. 81.
    Lindstrom UM (2007) Organic reactions in water, principles, strategies and applications. Blackwell Publishing, OxfordGoogle Scholar
  82. 82.
    Raj M, Singh VK (2009) Organocatalytic reactions in water. Chem Commun 6687–6703Google Scholar
  83. 83.
    Peng YY, Liu J, Lei X, Yin Z (2010) Room-temperature highly efficient Suzuki-Miyaura reactions in water in the presence of Stilbazo. Green Chem 12:1072–1075CrossRefGoogle Scholar
  84. 84.
    Prastaro A, Ceci P, Chiancone E, Boffi A, Cirilli R, Colone M, Fabrizi G, Stringaro A, Cacchi S (2009) Suzuki-Miyaura cross-coupling catalyzed by protein-stabilized palladium nanoparticles under aerobic conditions in water: application to a one-pot chemoenzymatic enantioselective synthesis of chiral biaryl alcohols. Green Chem 11:1929–1932CrossRefGoogle Scholar
  85. 85.
    Ohtaka A, Teratani T, Fujii R, Ikeshita K, Shimomura O, Nomura R (2009) Facile preparation of linear polystyrene-stabilized Pd nanoparticles in water. Chem Commun 7188–7190Google Scholar
  86. 86.
    Lipshutz BH, Ghorai S (2010) PQS-2: ring-closing- and cross-metathesis reactions on lipophilic substrates; in water only at room temperature, with in-flask catalyst recycling. Tetrahedron 66:1057–1063CrossRefGoogle Scholar
  87. 87.
    Vieira AS, Cunha RLOR, Klitzke CF, Zukerman-Schpector J, Stefani HA (2010) Highly efficient palladium-catalyzed Suzuki-Miyaura reactions of potassium aryltrifluoroborates with 5-iodo-1,3-dioxin-4-ones in water: an approach to α-aryl-β-ketoesters. Tetrahedron 66:773–779CrossRefGoogle Scholar
  88. 88.
    Wu J, Ni B, Headley AD (2009) Di(methylimidazole)prolinol silyl ether catalyzed highly michael addition of aldehydes to nitroolefins in water. Org Lett 11:3354–3356CrossRefGoogle Scholar
  89. 89.
    Hao WJ, Jiang B, Tu SJ, Cao XD, Wu SS, Yan S, Zhang XH, Han ZG, Shi F (2009) A new mild base-catalyzed Mannich reaction of hetero-arylamines in water: highly efficient stereoselective synthesis of β-aminoketones under microwave heating. Org Biomol Chem 7:1410–1414CrossRefGoogle Scholar
  90. 90.
    Ko K, Nakano K, Watanabe S, Ichikawa Y, Kotsuki H (2009) Development of new DMAP-related organocatalysts for use in the Michael addition reaction of β-ketoesters in water. Tetrahedron Lett 50:4025–4029CrossRefGoogle Scholar
  91. 91.
    De Rosa M, Soriente A (2010) A combination of water and microwave irradiation promotes the catalyst-free addition of pyrroles and indoles to nitroalkenes. Tetrahedron 66:2981–2986CrossRefGoogle Scholar
  92. 92.
    Xu DZ, Liu Y, Shi S, Wang Y (2010) A simple, efficient and green procedure for Knoevenagel condensation catalyzed by [C4dabco][BF4] ionic liquid in water. Green Chem 12:514–517CrossRefGoogle Scholar
  93. 93.
    Yu JJ, Wang LM, Liu JQ, Guo FL, Liu Y, Jiao N (2010) Synthesis of tetraketones in water and under catalyst-free conditions. Green Chem 12:216–219CrossRefGoogle Scholar
  94. 94.
    Lin JH, Zhang CP, Xiao JC (2009) Enantioselective aldol reaction of cyclic ketones with aryl aldehydes catalyzed by a cyclohexanediamine derived salt in the presence of water. Green Chem 11:1750–1753CrossRefGoogle Scholar
  95. 95.
    Jiang Z, Yang H, Han X, Luo J, Wong MW, Lu Y (2010) Direct asymmetric aldol reactions between aldehydes and ketones catalyzed by L-tryptophan in the presence of water. Org Biomol Chem 8:1368–1377CrossRefGoogle Scholar
  96. 96.
    Fu SD, Fu XK, Zhang SP, Zou XC, Wu XJ (2009) Highly diastereo- and enantioselective direct aldol reactions by 4-tert-butyldimethylsiloxy-substituted organocatalysts derived from N-prolylsulfonamides in water. Tetrahedron Asymmetry 20:2390–2396CrossRefGoogle Scholar
  97. 97.
    Behr A, Leschinski J (2009) Application of the solvent water in two-phase telomerisation reactions and recycling of the homogeneous palladium catalysts. Green Chem 11:609–613CrossRefGoogle Scholar
  98. 98.
    Nishikata T, Lipshutz BH (2009) Amination of allylic alcohols in water at room temperature. Org Lett 11:2377–2379CrossRefGoogle Scholar
  99. 99.
    Saidi O, Blacker AJ, Farah MM, Marsden SP, Williams JMJ (2010) Iridium-catalysed amine alkylation with alcohols in water. Chem Commun 46:1541–1543CrossRefGoogle Scholar
  100. 100.
    Marzaro G, Guiotto A, Chilin A (2009) Microwave-promoted mono-N-alkylation of aromatic amines in water: a new efficient and green method for an old and problematic reaction. Green Chem 11:774–776CrossRefGoogle Scholar
  101. 101.
    Coutouli-Argyropoulou E, Sarridis P, Gkizis P (2009) Water as the medium of choice for the 1,3-dipolar cycloaddition reactions of hydrophobic nitrones. Green Chem 11:1906–1914CrossRefGoogle Scholar
  102. 102.
    Jing L, Wei J, Zhou L, Huang Z, Lia Z, Zhou X (2010) Lithium pipecolinate as a facile and efficient ligand for copper-catalyzed hydroxylation of aryl halides in water. Chem Commun 46:4767–4769CrossRefGoogle Scholar
  103. 103.
    Bernini R, Cacchi S, Fabrizi G, Forte G, Petrucci F, Prastaro A, Niembro S, Shafir A, Vallribera A (2009) Alkynylation of aryl halides with perfluoro-tagged palladium nanoparticles immobilized on silica gel under aerobic, copper- and phosphine-free conditions in water. Org Biomol Chem 7:2270–2273CrossRefGoogle Scholar
  104. 104.
    Bhadra S, Saha A, Ranu BC (2008) One-pot copper nanoparticle-catalyzed synthesis of S-aryl- and S-vinyl dithiocarbamates in water: high diastereoselectivity achieved for vinyl dithiocarbamates. Green Chem 10:1224–1230CrossRefGoogle Scholar
  105. 105.
    Pei BJ, Lee AWM (2010) Highly efficient synthesis of extended triptycenes via Diels-Alder cycloaddition in water under microwave radiation. Tetrahedron Lett 51:4519–4522CrossRefGoogle Scholar
  106. 106.
    Ma Y, Jin S, Kan Y, Zhang YJ, Zhang W (2010) Highly active asymmetric Diels-Alder reactions catalyzed by C2-symmetric bipyrrolidines: catalyst recycling in water medium and insight into the catalytic mode. Tetrahedron 66:3849–3854CrossRefGoogle Scholar
  107. 107.
    Matveeva EV, Petrovskii PV, Klemenkova ZS, Bondarenko NA, Odinets IL (2010) A practical and efficient green synthesis of β-aminophosphoryl compounds via the aza-Michael reaction in water. C R Chimie 13:964–970CrossRefGoogle Scholar
  108. 108.
    Rafiee E, Eavani S, Khajooei Nejad F, Joshaghani M (2010) Cs2.5H0.5PW12O40 catalyzed diastereoselective synthesis of β-amino ketones via three component Mannich-type reaction in water. Tetrahedron 66:6858–6863CrossRefGoogle Scholar
  109. 109.
    Mukhopadhyay C, Datta A, Butcher RJ (2009) Highly efficient one-pot, three-component Mannich reaction catalysed by boric acid and glycerol in water with major ‘syn’ diastereoselectivity. Tetrahedron Lett 50:4246–4250CrossRefGoogle Scholar
  110. 110.
    Li J, Lu L, Su W (2010) A new strategy for the synthesis of benzoxanthenes catalyzed by proline triflate in water. Tetrahedron Lett 51:2434–2437CrossRefGoogle Scholar
  111. 111.
    Teimouri MB, Abbasi T, Mivehchi H (2008) Novel multicomponent reactions of primary amines and alkyl propiolates with alloxan derivatives in water. Tetrahedron 64:10425–10430CrossRefGoogle Scholar
  112. 112.
    Firouzabadi H, Iranpoor N, Gholinejad M (2010) Recyclable palladium-catalyzed Sonogashira-Hagihara coupling of aryl halides using 2-aminophenyl diphenylphosphinite ligand in neat water under copper-free condition. J Mol Catal A Chem 321:110–116CrossRefGoogle Scholar
  113. 113.
    Suzuka T, Okada Y, Ooshiro K, Uozumi Y (2010) Copper-free Sonogashira coupling in water with an amphiphilic resin-supported palladium complex. Tetrahedron 66:1064–1069CrossRefGoogle Scholar
  114. 114.
    Panchan W, Chiampanichayakul S, Snyder DL, Yodbuntung S, Pohmakotr M, Reutrakul V, Jaipetch T, Kuhakarn C (2010) Facile oxidative hydrolysis of acetals to esters using hypervalent iodine(III)/LiBr combination in water. Tetrahedron 66:2732–2735CrossRefGoogle Scholar
  115. 115.
    MacLeod PD, Li Z, Li CJ (2010) Self-catalytic, solvent-free or in/on water protocol: aza-Friedel-Crafts reactions between 3,4-dihydroisoquinoline and 1- or 2-naphthols. Tetrahedron 66:1045–1050CrossRefGoogle Scholar
  116. 116.
    DeBlase C, Leadbeater NE (2010) Ligand-free CuI-catalyzed cyanation of aryl halides using K4[Fe(CN)6] as cyanide source and water as solvent. Tetrahedron 66:1098–1101CrossRefGoogle Scholar
  117. 117.
    Sin E, Yi SS, Lee YS (2010) Chitosan-g-mPEG-supported palladium (0) catalyst for Suzuki cross-coupling reaction in water. J Mol Catal A Chem 315:99–104CrossRefGoogle Scholar
  118. 118.
    Liautard V, Desvergnes V, Martin OR (2008) Novel Galf-disaccharide mimics: synthesis by way of 1,3-dipolar cycloaddition reactions in water. Tetrahedron Asymmetry 19:1999–2002CrossRefGoogle Scholar
  119. 119.
    Wu XL, Wang GW (2009) Hypervalent iodine-mediated aminobromination of olefins in water. Tetrahedron 65:8802–8807CrossRefGoogle Scholar
  120. 120.
    Astarita A, Cermola F, DellaGreca M, Iesce MR, Previtera L, Rubino M (2009) Photooxygenation of furans in water and ionic liquid solutions. Green Chem 11:2030–2033CrossRefGoogle Scholar
  121. 121.
    Kuroboshi M, Yoshida T, Oshitani J, Goto K, Tanaka H (2009) Electroorganic synthesis in oil-in-water (O/W) nanoemulsion: TEMPO-mediated electrooxidation of amphiphilic alcohols in water. Tetrahedron 65:7177–7185CrossRefGoogle Scholar
  122. 122.
    Shen W, Wang LM, Tian H, Tang J, Yu JJ (2009) Brønsted acidic imidazolium salts containing perfluoroalkyl tails catalyzed one-pot synthesis of 1,8-dioxo-decahydroacridines in water. J Fluorine Chem 130:522–527CrossRefGoogle Scholar
  123. 123.
    Wang J, Wang H (2009) Clean production of Acid Blue 9 via catalytic oxidation in water. Ind Eng Chem Res 48:5548–5550CrossRefGoogle Scholar
  124. 124.
    Feng B, Hou Z, Wang X, Hu Y, Li H, Qiao Y (2009) Selective aerobic oxidation of styrene to benzaldehyde catalyzed by water-soluble palladium(II) complex in water. Green Chem 11:1446–1452CrossRefGoogle Scholar
  125. 125.
    Takenaga N, Goto A, Yoshimura M, Fujioka H, Dohi T, Kita Y (2009) Hypervalent iodine(III)/Et4N+Br combination in water for green and racemization-free aqueous oxidation of alcohols. Tetrahedron Lett 50:3227–3229CrossRefGoogle Scholar
  126. 126.
    Figiel PJ, Kirillov AM, Karabach YY, Kopylovich MN, Pombeiro AJL (2009) Mild aerobic oxidation of benzyl alcohols to benzaldehydes in water catalyzed by aqua-soluble multicopper(II) triethanolaminate compounds. J Mol Catal A Chem 305:178–182CrossRefGoogle Scholar
  127. 127.
    Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K (2009) Supported gold nanoparticle catalyst for the selective oxidation of silanes to silanols in water. Chem Commun 5302–5304Google Scholar
  128. 128.
    Zeror S, Collin J, Fiaud JC, Aribi Zouioueche L (2010) Enantioselective ketoester reductions in water: a comparison between microorganism- and ruthenium-catalyzed reactions. Tetrahedron Asymmetry 21:1211–1215CrossRefGoogle Scholar
  129. 129.
    Sant’ Anna Gds, Machado P, Sauzem PD, Rosa FA, Rubin MA, Ferreira J, Bonacorso HG, Zanattaa N, Martins MAP (2009) Ultrasound promoted synthesis of 2-imidazolines in water: a greener approach toward monoamine oxidase inhibitors. Bioorg Med Chem Lett 19:546–549CrossRefGoogle Scholar
  130. 130.
    Carpita A, Ribecai A, Stabile P (2010) Microwave-assisted synthesis of indole- and azaindole-derivatives in water via cycloisomerization of 2-alkynylanilines and alkynylpyridinamines promoted by amines or catalytic amounts of neutral or basic salts. Tetrahedron 66:7169–7178CrossRefGoogle Scholar
  131. 131.
    Qu GR, Zhao L, Wang DC, Wu J, Guo HM (2008) Microwave-promoted efficient synthesis of C6-cyclo secondary amine substituted purine analogues in neat water. Green Chem 10:287–289CrossRefGoogle Scholar
  132. 132.
    Tu SJ, Cao XD, Hao WJ, Zhang XH, Yan S, Wu SS, Han ZG, Shi F (2009) An efficient and chemoselective synthesis of benzo[e][1,4]thiazepin-2-(1H,3H,5H)-ones via a microwave-assisted multi-component reaction in water. Org Biomol Chem 7:557–563CrossRefGoogle Scholar
  133. 133.
    Tu SJ, Zhang XH, Han ZG, Cao XD, Wu SS, Yan S, Hao WJ, Zhang G, Ma N (2009) Synthesis of isoxazolo[5,4-b]pyridines by microwave-assisted multi-component reactions in water. J Comb Chem 11:428–432CrossRefGoogle Scholar
  134. 134.
    Baruwati B, Polshettiwar V, Varma RS (2009) Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem 11:926–930CrossRefGoogle Scholar
  135. 135.
    Jessop PG, Leitner W (1999) Chemical synthesis using supercritical fluids. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  136. 136.
    Williams JR, Clifford AA (2000) Supercritical fluid methods and protocols. Humana Press Totowa, TotowaCrossRefGoogle Scholar
  137. 137.
    Hyde JR, Licence P, Carter D, Poliakoff M (2001) Continuous catalytic reactions in supercritical fluids. Appl Catal A Gen 222:119–131CrossRefGoogle Scholar
  138. 138.
    Señoráns FJ, Ibañez E (2002) Analysis of fatty acids in foods by supercritical fluid chromatography. Anal Chim Acta 465:131–144CrossRefGoogle Scholar
  139. 139.
    Sarrade S, Guizard C, Rios GM (2003) New applications of supercritical fluids and supercritical fluids processes in separation. Sep Purif Technol 32:57–63CrossRefGoogle Scholar
  140. 140.
    Goodship V, Ogur EO (2004) Polymer processing with supercritical fluids, Rapra review reports. Rapra Technology Ltd, ShawburyGoogle Scholar
  141. 141.
    Prajapati D, Gohain M (2004) Recent advances in the application of supercritical fluids for carbon-carbon bond formation in organic synthesis. Tetrahedron 60:815–833CrossRefGoogle Scholar
  142. 142.
    Yeo SD, Kiran E (2005) Formation of polymer particles with supercritical fluids: a review. J Supercrit Fluid 34:287–308CrossRefGoogle Scholar
  143. 143.
    Aymonier C, Loppinet-Serani A, Reveron H, Garrabos Y, Cansell F (2006) Review of supercritical fluids in inorganic materials science. J Supercrit Fluid 38:242–251CrossRefGoogle Scholar
  144. 144.
    Martínez JL (2008) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  145. 145.
    Mishima K (2008) Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas. Adv Drug Deliv Rev 60:411–432CrossRefGoogle Scholar
  146. 146.
    Sunarso J, Ismadji S (2009) Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction: a review. J Hazard Mater 161:1–20CrossRefGoogle Scholar
  147. 147.
    Ramsey E, Sun Q, Zhang Z, Zhang C, Gou W (2009) Mini-review: green sustainable processes using supercritical fluid carbon dioxide. J Environ Sci 21:720–726CrossRefGoogle Scholar
  148. 148.
    Herrero M, Mendiola JA, Cifuentes A, Ibanez E (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217:2495–2511CrossRefGoogle Scholar
  149. 149.
    Egydio JA, Moraes AM, Rosa PTV (2010) Supercritical fluid extraction of lycopene from tomato juice and characterization of its antioxidation activity. J Supercrit Fluid 54:159–164CrossRefGoogle Scholar
  150. 150.
    Hanif M, Atsuta Y, Fujie K, Daimon H (2010) Supercritical fluid extraction of microbial phospholipid fatty acids from activated sludge. J Chromatogr A 1217:6704–6708CrossRefGoogle Scholar
  151. 151.
    Nguyen-Phan TD, Pham HD, Kim S, Oh ES, Kim EJ, Shin EW (2010) Surfactant removal from mesoporous TiO2 nanocrystals by supercritical CO2 fluid extraction. J Ind Eng Chem 16:823–828Google Scholar
  152. 152.
    Arias M, Penichet I, Ysambertt F, Bauza R, Zougagh M, Ríos A (2009) Fast supercritical fluid extraction of low- and high-density polyethylene additives: comparison with conventional reflux and automatic Soxhlet extraction. J Supercrit Fluid 50:22–28CrossRefGoogle Scholar
  153. 153.
    Tian G, Liao W, Wai CM, Rao L (2008) Extraction of trivalent lanthanides with oxa-diamides in supercritical fluid carbon dioxide. Ind Eng Chem Res 47:2803–2807CrossRefGoogle Scholar
  154. 154.
    Sotelo JL, Rodrıguez A, Agueda VI, Gomez P (2010) Supercritical fluids as reaction media in the ethylbenzene disproportionation on ZSM-5. J Supercrit Fluid 55:241–245CrossRefGoogle Scholar
  155. 155.
    Sparks DL, Estevez LA, Hernandez R (2009) Supercritical-fluid-assisted oxidation of oleic acid with ozone and potassium permanganate. Green Chem 11:986–993CrossRefGoogle Scholar
  156. 156.
    Lopez-Periago AM, Garcıa-Gonzalez CA, Domingo C (2010) Towards the synthesis of Schiff base macrocycles under supercritical CO2 conditions. Chem Commun 46:4315–4317CrossRefGoogle Scholar
  157. 157.
    Chatterjee M, Matsushima K, Ikushima Y, Sato M, Yokoyama T, Kawanami H, Suzuki T (2010) Production of linear alkane via hydrogenative ring opening of a furfural-derived compound in supercritical carbon dioxide. Green Chem 12:779–782CrossRefGoogle Scholar
  158. 158.
    Grignard B, Phan T, Bertin D, Gigmes D, Jerome C, Detrembleur C (2010) Dispersion nitroxide mediated polymerization of methyl methacrylate in supercritical carbon dioxide using in situ formed stabilizers. Polym Chem 1:837–840CrossRefGoogle Scholar
  159. 159.
    Li J, Peng J, Zhang G, Bai Y, Lai G, Li X (2010) Hydrosilylation catalysed by a rhodium complex in a supercritical CO2/ionic liquid system. New J Chem 34:1330–1334CrossRefGoogle Scholar
  160. 160.
    Han X, Bourne RA, Poliakoff M, George MW (2009) Strategies for cleaner oxidations using photochemically generated singlet oxygen in supercritical carbon dioxide. Green Chem 11:1787–1792CrossRefGoogle Scholar
  161. 161.
    Manoi K, Rizvi SSH (2010) Physicochemical characteristics of phosphorylated cross-linked starch produced by reactive supercritical fluid extrusion. Carbohyd Polym 81:687–694CrossRefGoogle Scholar
  162. 162.
    Cheng WT, Chih YW (2010) Manipulation of silver nanostructures using supercritical fluids in the presence of polyvinylpyrrolidone and ethylene glycol. J Supercrit Fluid 54:272–280CrossRefGoogle Scholar
  163. 163.
    Wang Q, Guan YX, Yao SJ, Zhu ZQ (2010) Microparticle formation of sodium cellulose sulfate using supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer. Chem Eng J 159:220–229CrossRefGoogle Scholar
  164. 164.
    da Silva MS, Vão ER, Temtem M, Mafr L, Caldeira J, Aguiar-Ricardo A, Casimiro T (2010) Clean synthesis of molecular recognition polymeric materials with chiral sensing capability using supercritical fluid technology. Application as HPLC stationary phases. Biosens Bioelectron 25:1742–1747CrossRefGoogle Scholar
  165. 165.
    Chen Z, Li S, Xue F, Sun G, Luo C, Chen J, Xu Q (2010) A simple and efficient route to prepare inorganic hollow microspheres using polymer particles as template in supercritical fluids. Colloids Surf A Physicochem Eng Aspects 355:45–52CrossRefGoogle Scholar
  166. 166.
    Duarte ARC, Caridade SG, Mano JF, Reis RL (2009) Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology. Mater Sci Eng C 29:2110–2115CrossRefGoogle Scholar
  167. 167.
    Padrela L, Rodrigues MA, Velaga SP, Matos HA, de Azevedo EG (2009) Formation of indomethacin-saccharin cocrystals using supercritical fluid technology. Eur J Pharm Sci 38:9–17CrossRefGoogle Scholar
  168. 168.
    Duarte ARC, Mano JF, Reis RL (2009) Preparation of chitosan scaffolds loaded with dexamethasone for tissue engineering applications using supercritical fluid technology. Eur Polym J 45:141–148CrossRefGoogle Scholar
  169. 169.
    Ramírez R, Garay I, Álvarez J, Martí M, Parra JL, Coderch L (2008) Supercritical fluid extraction to obtain ceramides from wool fibers. Sep Purif Technol 63:552–557CrossRefGoogle Scholar
  170. 170.
    Reverchon E, Cardea S, Rapuano C (2008) A new supercritical fluid-based process to produce scaffolds for tissue replacement. J Supercrit Fluid 45:365–373CrossRefGoogle Scholar
  171. 171.
    Hoshi T, Sawaguchi T, Matsuno R, Konno T, Takai M, Ishihara K (2010) Control of surface modification uniformity inside small-diameter polyethylene/poly(vinyl acetate) composite tubing prepared with supercritical carbon dioxide. J Mater Chem 20:4897–4904CrossRefGoogle Scholar
  172. 172.
    Zhang X, Chang D, Liu J, Luo Y (2010) Conducting polymer aerogels from supercritical CO2 drying PEDOT-PSS hydrogels. J Mater Chem 20:5080–5085CrossRefGoogle Scholar
  173. 173.
    Sun Z, Zhang H, An G, Yang G, Liu Z (2010) Supercritical CO2-facilitating large-scale synthesis of CeO2 nanowires and their application for solvent-free selective hydrogenation of nitroarenes. J Mater Chem 20:1947–1952CrossRefGoogle Scholar
  174. 174.
    Urbanczyk L, Calberg C, Benali S, Bourbigot S, Espuche E, Gouanve F, Dubois P, Germain A, Jerome C, Detrembleur C, Alexandre M (2008) Poly(caprolactone)/clay masterbatches prepared in supercritical CO2 as efficient clay delamination promoters in poly(styrene-co-acrylonitrile). J Mater Chem 18:4623–4630CrossRefGoogle Scholar
  175. 175.
    Shi J, Khatri M, Xue SJ, Mittal GS, Ma Y, Li D (2009) Solubility of lycopene in supercritical CO2 fluid as affected by temperature and pressure. Sep Purif Technol 66:322–328CrossRefGoogle Scholar
  176. 176.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083CrossRefGoogle Scholar
  177. 177.
    Wasserscheid P, Welton T (2008) Ionic liquids in synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  178. 178.
    Keskin S, Kayrak-Talay D, Akman U, Hortacsu O (2007) A review of ionic liquids towards supercritical fluid applications. J Supercrit Fluid 43:150–180CrossRefGoogle Scholar
  179. 179.
    Parvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665CrossRefGoogle Scholar
  180. 180.
    Sledz P, Mauduit M, Grela K (2008) Olefin metathesis in ionic liquids. Chem Soc Rev 37:2433–2442CrossRefGoogle Scholar
  181. 181.
    Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327CrossRefGoogle Scholar
  182. 182.
    Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43:4988–4992CrossRefGoogle Scholar
  183. 183.
    Martins MAP, Frizzo CP, Moreira DN, Zanatta N, Bonacorso HG (2008) Ionic liquids in heterocyclic synthesis. Chem Rev 108:2015–2050CrossRefGoogle Scholar
  184. 184.
    Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21CrossRefGoogle Scholar
  185. 185.
    Kubisa P (2009) Ionic liquids as solvents for polymerization processes-progress and challenges. Prog Polym Sci 34:1333–1347CrossRefGoogle Scholar
  186. 186.
    Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRefGoogle Scholar
  187. 187.
    Rogers RD, Seddon KR (2002) Ionic liquids: industrial applications to green chemistry, vol 818, ACS symposium series. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  188. 188.
    Rogers RD, Seddon KR (2003) Ionic liquids–solvents of the future? Science 302:792–793CrossRefGoogle Scholar
  189. 189.
    Moniruzzaman M, Nakashima K, Kamiya N, Goto M (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48:295–314CrossRefGoogle Scholar
  190. 190.
    Noritomi H, Suzuki K, Kikuta M, Kato S (2009) Catalytic activity of α-chymotrypsin in enzymatic peptide synthesis in ionic liquids. Biochem Eng J 47:27–30CrossRefGoogle Scholar
  191. 191.
    Shen ZL, Zhou WJ, Liu YT, Ji SJ, Loh TP (2008) One-pot chemoenzymatic syntheses of enantiomerically-enriched O-acetyl cyanohydrins from aldehydes in ionic liquid. Green Chem 10:283–286CrossRefGoogle Scholar
  192. 192.
    Kahveci D, Guo Z, Ozcelik B, Xu X (2009) Lipase-catalyzed glycerolysis in ionic liquids directed towards diglyceride synthesis. Process Biochem 44:1358–1365CrossRefGoogle Scholar
  193. 193.
    Kurata A, Kitamura Y, Irie S, Takemoto S, Akai Y, Hirota Y, Fujita T, Iwai K, Furusawa M, Kishimoto N (2010) Enzymatic synthesis of caffeic acid phenethyl ester analogues in ionic liquid. J Biotechnol 148:133–138CrossRefGoogle Scholar
  194. 194.
    Liang JH, Ren XQ, Wang JT, Jinag M, Li ZJ (2010) Preparation of biodiesel by transesterification from cottonseed oil using the basic dication ionic liquids as catalysts. J Fuel Chem Technol 38:275–280CrossRefGoogle Scholar
  195. 195.
    de los AP Rıos, Hernandez-Fernandez FJ, Tomas-Alonso F, Gomez D, Vıllora G (2008) Synthesis of esters in ionic liquids. The effect of vinyl esters and alcohols. Process Biochem 43:892–895CrossRefGoogle Scholar
  196. 196.
    Vidya P, Chadha A (2010) Pseudomonas cepacia lipase catalyzed esterification and transesterification of 3-(furan-2-yl) propanoic acid/ethyl ester: a comparison in ionic liquids vs hexane. J Mol Catal B Enzym 65:68–72CrossRefGoogle Scholar
  197. 197.
    Abe Y, Kude K, Hayase S, Kawatsura M, Tsunashima K, Itoh T (2008) Design of phosphonium ionic liquids for lipase-catalyzed transesterification. J Mol Catal B Enzym 51:81–85CrossRefGoogle Scholar
  198. 198.
    Yang J, Zhou H, Lu X, Yuan Y (2010) Brønsted acidic ionic liquid as an efficient and recyclable promoter for hydroesterification of olefins catalyzed by a triphenylphosphine-palladium complex. Catal Commun 11:1200–1204CrossRefGoogle Scholar
  199. 199.
    Chiappe C, Malvaldi M, Pomelli CS (2010) The solvent effect on the Diels-Alder reaction in ionic liquids: multiparameter linear solvation energy relationships and theoretical analysis. Green Chem 12:1330–1339CrossRefGoogle Scholar
  200. 200.
    Bortolini O, De Nino A, Garofalo A, Maiuolo L, Procopio A, Russo B (2010) Erbium triflate in ionic liquids: a recyclable system of improving selectivity in Diels-Alder reactions. Appl Catal A Gen 372:124–129CrossRefGoogle Scholar
  201. 201.
    Zheng X, Qian Y, Wang Y (2010) Direct asymmetric aza Diels-Alder reaction catalyzed by chiral 2-pyrrolidinecarboxylic acid ionic liquid. Catal Commun 11:567–570CrossRefGoogle Scholar
  202. 202.
    Van Buu ON, Aupoix A, Hong NDT, Vo-Thanh G (2009) Chiral ionic liquids derived from isosorbide: synthesis, properties and applications in asymmetric synthesis. New J Chem 33:2060–2072CrossRefGoogle Scholar
  203. 203.
    Buu ONV, Aupoix A, Vo-Thanh G (2009) Synthesis of novel chiral imidazolium-based ionic liquids derived from isosorbide and their applications in asymmetric aza Diels-Alder reaction. Tetrahedron 65:2260–2265CrossRefGoogle Scholar
  204. 204.
    Wang WH, Wang XB, Kodama K, Hirose T, Zhang GY (2010) Novel chiral ammonium ionic liquids as efficient organocatalysts for asymmetric Michael addition of aldehydes to nitroolefins. Tetrahedron 66:4970–4976CrossRefGoogle Scholar
  205. 205.
    Guo H, Li X, Wang JL, Jin XH, Lin XF (2010) Acidic ionic liquid [NMP]H2PO4 as dual solvent-catalyst for synthesis of β-alkoxyketones by the oxa-Michael addition reactions. Tetrahedron 66:8300–8303CrossRefGoogle Scholar
  206. 206.
    Meciarova M, Toma Š, Šebesta R (2009) Asymmetric organocatalyzed Michael addition of aldehydes to β-nitrostyrene in ionic liquids. Tetrahedron Asymmetry 20:2403–2406CrossRefGoogle Scholar
  207. 207.
    Zhang Q, Ni B, Headley AD (2008) Asymmetric Michael addition reactions of aldehydes with nitrostyrenes catalyzed by functionalized chiral ionic liquids. Tetrahedron 64:5091–5097CrossRefGoogle Scholar
  208. 208.
    Chen W, Yin H, Zhang Y, Lu Z, Wang A, Shen Y, Jiang T, Yu L (2010) Acylation of salicylamide to 5-acetylsalicylamide using ionic liquids as dual catalyst and solvent. J Ind Eng Chem 16:800–804Google Scholar
  209. 209.
    Lin JH, Zhang CP, Zhu ZQ, Chen QY, Xiao JC (2009) A novel pyrrolidinium ionic liquid with 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoroethoxy)ethanesulfonate anion as a recyclable reaction medium and efficient catalyst for Friedel-Crafts alkylations of indoles with nitroalkenes. J Fluorine Chem 130:394–398CrossRefGoogle Scholar
  210. 210.
    Aupoix A, Pegot B, Vo-Thanh G (2010) Synthesis of imidazolium and pyridinium-based ionic liquids and application of 1-alkyl-3-methylimidazolium salts as pre-catalysts for the benzoin condensation using solvent-free and microwave activation. Tetrahedron 66:1352–1356CrossRefGoogle Scholar
  211. 211.
    Saha D, Saha A, Ranu BC (2009) Remarkable influence of substituent in ionic liquid in control of reaction: simple, efficient and hazardous organic solvent free procedure for the synthesis of 2-aryl benzimidazoles promoted by ionic liquid, [pmim]BF4. Green Chem 11:733–737CrossRefGoogle Scholar
  212. 212.
    Moreira DN, Longhi K, Frizzo CP, Bonacorso HG, Zanatta N, Martins MAP (2010) Ionic liquid promoted cyclocondensation reactions to the formation of isoxazoles, pyrazoles and pyrimidines. Catal Commun 11:476–479CrossRefGoogle Scholar
  213. 213.
    Frizzo CP, Marzari MRB, Buriol L, Moreira DN, Rosa FA, Vargas PS, Zanatta N, Bonacorso HG, Martins MAP (2009) Ionic liquid effects on the reaction of β-enaminones and tert-­butylhydrazine and applications for the synthesis of pyrazoles. Catal Commun 10:1967–1970CrossRefGoogle Scholar
  214. 214.
    Dong F, Zhenghao F, Zuliang L (2009) Functionalized ionic liquid as the recyclable catalyst for Mannich-type reaction in aqueous media. Catal Commun 10:1267–1270CrossRefGoogle Scholar
  215. 215.
    Feng LC, Sun YW, Tang WJ, Xu LJ, Lam KL, Zhou Z, Chan ASC (2010) Highly efficient chemoselective construction of 2,2-dimethyl-6-substituted 4-piperidones via multi-component tandem Mannich reaction in ionic liquids. Green Chem 12:949–952CrossRefGoogle Scholar
  216. 216.
    Zhang Z, Li C, Wang Q, Zhao ZK (2009) Efficient hydrolysis of chitosan in ionic liquids. Carbohyd Polym 78:685–689CrossRefGoogle Scholar
  217. 217.
    Lima S, Neves P, Antunes MM, Pillinger M, Ignatyev N, Valente AA (2009) Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Appl Catal A Gen 363:93–99CrossRefGoogle Scholar
  218. 218.
    Zhang Z, Zhao ZK (2009) Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohyd Res 344:2069–2072CrossRefGoogle Scholar
  219. 219.
    Li C, Zhao ZK, Wang A, Zheng M, Zhang T (2010) Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. Carbohyd Res 345:1846–1850CrossRefGoogle Scholar
  220. 220.
    Gabriele B, Mancuso R, Lupinacci E, Spina R, Salerno G, Veltri L, Dibenedetto A (2009) Recyclable catalytic synthesis of substituted quinolines: copper-catalyzed heterocyclization of 1-(2-aminoaryl)-2-yn-1-ols in ionic liquids. Tetrahedron 65:8507–8512CrossRefGoogle Scholar
  221. 221.
    Qi X, Watanabe M, Aida TM, Smith RL Jr (2009) Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chem 11:1327–1331CrossRefGoogle Scholar
  222. 222.
    Teixeira J, Silva AR, Branco LC, Afonso CAM, Freire C (2010) Asymmetric alkene epoxidation by Mn(III)salen catalyst in ionic liquids. Inorg Chim Acta 363:3321–3329CrossRefGoogle Scholar
  223. 223.
    Wu J, Liu C, Jiang Y, Hu M, Li S, Zhai Q (2010) Synthesis of chiral epichlorohydrin by chloroperoxidase-catalyzed epoxidation of 3-chloropropene in the presence of an ionic liquid as co-solvent. Catal Commun 11:727–731CrossRefGoogle Scholar
  224. 224.
    Bibal C, Daran JC, Deroover S, Poli R (2010) Ionic Schiff base dioxidomolybdenum(VI) complexes as catalysts in ionic liquid media for cyclooctene epoxidation. Polyhedron 29:639–647CrossRefGoogle Scholar
  225. 225.
    Herbert M, Montilla F, Moyano R, Pastor A, Álvarez E, Galindo A (2009) Olefin epoxidations in the ionic liquid [C4mim][PF6] catalysed by oxodiperoxomolybdenum species in situ generated from molybdenum trioxide and urea-hydrogen peroxide: the synthesis and molecular structure of [Mo(O)(O2)2(4-MepyO)2].H2O. Polyhedron 28:3929–3934CrossRefGoogle Scholar
  226. 226.
    Zang H, Su Q, Mo Y, Cheng BW, Jun S (2010) Ionic liquid [EMIM]OAc under ultrasonic irradiation towards the first synthesis of trisubstituted imidazoles. Ultrason Sonochem 17:749–751CrossRefGoogle Scholar
  227. 227.
    Wang Y, Gong X, Wang Z, Dai L (2010) SO3H-functionalized ionic liquids as efficient and recyclable catalysts for the synthesis of pentaerythritol diacetals and diketals. J Mol Catal A Chem 322:7–16CrossRefGoogle Scholar
  228. 228.
    Prikhod’ko SA, Adonin NY, Parmon VN (2010) The ionic liquid [bmim]Br as an alternative medium for the catalytic cleavage of aromatic C-F and C-Cl bonds. Tetrahedron Lett 51:2265–2268CrossRefGoogle Scholar
  229. 229.
    Azizov AH, Aliyeva RV, Kalbaliyeva ES, Ibrahimova MJ (2010) Selective synthesis and the mechanism of formation of the oligoalkylnaphthenic oils by oligocyclization of 1-hexene in the presence of ionic-liquid catalysts. Appl Catal A Gen 375:70–77CrossRefGoogle Scholar
  230. 230.
    Zhang Z, Zhao ZK (2010) Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour Technol 101:1111–1114CrossRefGoogle Scholar
  231. 231.
    Arai S, Nakashima K, Tanino T, Ogino C, Kondo A, Fukuda H (2010) Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids. Enzyme Microb Technol 46:51–55CrossRefGoogle Scholar
  232. 232.
    Junming XU, Jianchun J, Zhiyue Z, Jing L (2010) Synthesis of tributyl citrate using acid ionic liquid as catalyst. Process Saf Environ Protect 88:28–30CrossRefGoogle Scholar
  233. 233.
    Wang H, Lu B, Wang X, Zhang J, Cai Q (2009) Highly selective synthesis of dimethyl carbonate from urea and methanol catalyzed by ionic liquids. Fuel Process Technol 90:1198–1201CrossRefGoogle Scholar
  234. 234.
    Fang D, Shi QR, Cheng J, Gong K, Liu ZL (2008) Regioselective mononitration of aromatic compounds using Brnsted acidic ionic liquids as recoverable catalysts. Appl Catal A Gen 345:158–163CrossRefGoogle Scholar
  235. 235.
    Liu Y, Hu R, Xu C, Su H (2008) Alkylation of isobutene with 2-butene using composite ionic liquid catalysts. Appl Catal A Gen 346:189–193CrossRefGoogle Scholar
  236. 236.
    Frizzo CP, Moreira DN, Guarda EA, Fiss GF, Marzari MRB, Zanatta N, Bonacorso HG, Martins MAP (2009) Ionic liquid as catalyst in the synthesis of N-alkyl trifluoromethyl pyrazoles. Catal Commun 10:1153–1156CrossRefGoogle Scholar
  237. 237.
    Ruther T, Ross T, Mensforth EJ, Hollenkamp AF (2009) N-alkylation of N-heterocyclic ionic liquid precursors in ionic liquids. Green Chem 11:804–809CrossRefGoogle Scholar
  238. 238.
    Gunaratne HQN, Lotz TJ, Seddon KR (2010) Chloroindate(III) ionic liquids as catalysts for alkylation of phenols and catechol with alkenes. New J Chem 34:1821–1824CrossRefGoogle Scholar
  239. 239.
    Bui TLT, Korth W, Aschauer S, Jess A (2009) Alkylation of isobutane with 2-butene using ionic liquids as catalyst. Green Chem 11:1961–1967CrossRefGoogle Scholar
  240. 240.
    Xin-hua Y, Min C, Qi-xun D, Xiao-nong C (2009) Friedel-Crafts acylation of anthracene with oxalyl chloride catalyzed by ionic liquid of [bmim]Cl/AlCl3. Chem Eng J 146:266–269CrossRefGoogle Scholar
  241. 241.
    Shogren RL, Biswas A (2010) Acetylation of starch with vinyl acetate in imidazolium ionic liquids and characterization of acetate distribution. Carbohyd Polym 81:149–151CrossRefGoogle Scholar
  242. 242.
    Deb S, Wähälä K (2010) Rapid synthesis of long chain fatty acid esters of steroids in ionic liquids with microwave irradiation: expedient one-pot procedure for estradiol monoesters. Steroids 75:740–744CrossRefGoogle Scholar
  243. 243.
    Lombardo M, Easwar S, Pasi F, Trombini C, Dhavale DD (2008) Protonated arginine and lysine as catalysts for the direct asymmetric aldol reaction in ionic liquids. Tetrahedron 64:9203–9207CrossRefGoogle Scholar
  244. 244.
    Zhao X, Gu Y, Li J, Ding H, Shan Y (2008) An environment-friendly method for synthesis of 1,4-dibromo-naphthalene in aqueous solution of ionic liquids. Catal Commun 9:2179–2182CrossRefGoogle Scholar
  245. 245.
    Forsyth SA, Frohlich U, Goodrich P, Gunaratne HQN, Hardacre C, McKeown A, Seddon KR (2010) Functionalised ionic liquids: synthesis of ionic liquids with tethered basic groups and their use in Heck and Knoevenagel reactions. New J Chem 34:723–731CrossRefGoogle Scholar
  246. 246.
    Yuan X, Yan N, Xiao C, Li C, Fei Z, Cai Z, Kou Y, Dyson PJ (2010) Highly selective hydrogenation of aromatic chloronitro compounds to aromatic chloroamines with ionic-liquid-like copolymer stabilized platinum nanocatalysts in ionic liquids. Green Chem 12:228–233CrossRefGoogle Scholar
  247. 247.
    Zhou H, Yang J, Ye L, Lin H, Yuan Y (2010) Effects of acidity and immiscibility of lactam-based Brønsted-acidic ionic liquids on their catalytic performance for esterification. Green Chem 12:661–665CrossRefGoogle Scholar
  248. 248.
    Singh D, Narayanaperumal S, Gul K, Godoi M, Rodrigues OED, Braga AL (2010) Efficient synthesis of selenoesters from acyl chlorides mediated by CuO nanopowder in ionic liquid. Green Chem 12:957–960CrossRefGoogle Scholar
  249. 249.
    Osichow A, Mecking S (2010) Alkoxycarbonylation of ethylene with cellulose in ionic liquids. Chem Commun 46:4980–4981CrossRefGoogle Scholar
  250. 250.
    Van Doorslaer C, Peeters A, Mertens P, Vinckier C, Binnemans K, De Vos D (2009) Oxidation of cyclic acetals by ozone in ionic liquid media. Chem Commun 6439–6441Google Scholar
  251. 251.
    Harjani JR, Abraham TJ, Gomez AT, Garcia MT, Singer RD, Scammells PJ (2010) Sonogashira coupling reactions in biodegradable ionic liquids derived from nicotinic acid. Green Chem 12:650–655CrossRefGoogle Scholar
  252. 252.
    Mayer AC, Salit AF, Bolm C (2008) Iron-catalysed aziridination reactions promoted by an ionic liquid. Chem Commun 5975–5977Google Scholar
  253. 253.
    Guryanov I, Lopez AM, Carraro M, Da Ros T, Scorrano G, Maggini M, Prato M, Bonchio M (2009) Metal-free, retro-cycloaddition of fulleropyrrolidines in ionic liquids under microwave irradiation. Chem Commun 3940–3942Google Scholar
  254. 254.
    Liu F, Li Z, Yu S, Cui X, Ge X (2010) Environmentally benign methanolysis of polycarbonate to recover bisphenol A and dimethyl carbonate in ionic liquids. J Hazard Mater 174:872–875CrossRefGoogle Scholar
  255. 255.
    Eichmann M, Keim W, Haumann M, Melcher BU, Wasserscheid P (2009) Nickel catalyzed dimerization of propene in chloroaluminate ionic liquids: detailed kinetic studies in a batch reactor. J Mol Catal A Chem 314:42–48CrossRefGoogle Scholar
  256. 256.
    Kumar V, Malhotra SV (2008) Synthesis of nucleoside-based antiviral drugs in ionic liquids. Bioorg Med Chem Lett 18:5640–5642CrossRefGoogle Scholar
  257. 257.
    Chrobok A (2010) The Baeyere-Villiger oxidation of ketones with Oxone® in the presence of ionic liquids as solvents. Tetrahedron 66:6212–6216CrossRefGoogle Scholar
  258. 258.
    Hu YL, Liu QF, Lu TT, Lu M (2010) Highly efficient oxidation of organic halides to aldehydes and ketones with H5IO6 in ionic liquid [C12mim][FeCl4]. Catal Commun 11:923–927CrossRefGoogle Scholar
  259. 259.
    Chrobok A (2010) Baeyer-Villiger oxidation of ketones in ionic liquids using molecular oxygen in the presence of benzaldehyde. Tetrahedron 66:2940–2943CrossRefGoogle Scholar
  260. 260.
    Fan X, Qu Y, Wang Y, Zhang X, Wang J (2010) Ru(III)-catalyzed oxidation of homopropargyl alcohols in ionic liquid: an efficient and green route to 1,2-allenic ketones. Tetrahedron Lett 51:2123–2126CrossRefGoogle Scholar
  261. 261.
    Zakzeski J, Jongerius AL, Weckhuysen BM (2010) Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem 12:1225–1236CrossRefGoogle Scholar
  262. 262.
    Zang H, Su Q, Mo Y, Cheng B (2010) Ionic liquid under ultrasonic irradiation towards a facile synthesis of pyrazolone derivatives. Ultrason Sonochem 18:68–72CrossRefGoogle Scholar
  263. 263.
    Kishi Y, Nagura H, Inagi S, Fuchigami T (2008) Facile and highly efficient synthesis of fluorinated heterocycles via Prins cyclization in ionic liquid hydrogen fluoride salts. Chem Commun 3876–3878Google Scholar
  264. 264.
    Obliosca JM, Arellano IHJ, Huang MH, Arco SD (2010) Double layer micellar stabilization of gold nanocrystals by greener ionic liquid 1-butyl-3-methylimidazolium lauryl sulfate. Mater Lett 64:1109–1112CrossRefGoogle Scholar
  265. 265.
    Tsuda T, Seino S, Kuwabata S (2009) Gold nanoparticles prepared with a room-temperature ionic liquid-radiation irradiation method. Chem Commun 6792–6794Google Scholar
  266. 266.
    Redel E, Walter M, Thomann R, Hussein L, Kruger M, Janiak C (2010) Stop-and-go, stepwise and “ligand-free” nucleation, nanocrystal growth and formation of Au-NPs in ionic liquids (ILs). Chem Commun 46:1159–1161CrossRefGoogle Scholar
  267. 267.
    Khare V, Li Z, Mantion A, Ayi AA, Sonkaria S, Voelkl A, Thunemann AF, Taubert A (2010) Strong anion effects on gold nanoparticle formation in ionic liquids. J Mater Chem 20:1332–1339CrossRefGoogle Scholar
  268. 268.
    Okazaki K, Kiyama T, Hirahara K, Tanaka N, Kuwabata S, Torimoto T (2008) Single-step synthesis of gold-silver alloy nanoparticles in ionic liquids by a sputter deposition technique. Chem Commun 691–693Google Scholar
  269. 269.
    An J, Wang D, Luo Q, Yuan X (2009) Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid. Mater Sci Eng C 29:1984–1989CrossRefGoogle Scholar
  270. 270.
    Lorbeer C, Cybinska J, Mudring AV (2010) Facile preparation of quantum cutting GdF3: Eu3+ nanoparticles from ionic liquids. Chem Commun 46:571–573CrossRefGoogle Scholar
  271. 271.
    Hu H, Yang H, Huang P, Cui D, Peng Y, Zhang J, Lu F, Liand J, Shi D (2010) Unique role of ionic liquid in microwave-assisted synthesis of monodisperse magnetite nanoparticles. Green Chem 12:957–960CrossRefGoogle Scholar
  272. 272.
    von Prondzinski N, Cybinska J, Mudring AV (2010) Easy access to ultra long-time stable, luminescent europium(II) fluoride nanoparticles in ionic liquids. Chem Commun 46:4393–4395CrossRefGoogle Scholar
  273. 273.
    Farag HK, Endres F (2008) Studies on the synthesis of nano-alumina in air and water stable ionic liquids. J Mater Chem 18:442–449CrossRefGoogle Scholar
  274. 274.
    Guo DJ (2010) Novel synthesis of PtRu/multi-walled carbon nanotube catalyst via a microwave-assisted imidazolium ionic liquid method for methanol oxidation. J Power Sources 195:7234–7237CrossRefGoogle Scholar
  275. 275.
    Xia J, Li H, Luo Z, Shi H, Wang K, Shu H, Yan Y (2009) Microwave-assisted synthesis of flower-like and leaf-like CuO nanostructures via room-temperature ionic liquids. J Phys Chem Solids 70:1461–1464CrossRefGoogle Scholar
  276. 276.
    Taghvaei V, Habibi-Yangjeh A, Behboudnia M (2009) Preparation and characterization of SnO2 nanoparticles in aqueous solution of [EMIM][EtSO4] as a low cost ionic liquid using ultrasonic irradiation. Powder Technol 195:63–67CrossRefGoogle Scholar
  277. 277.
    Ma L, Chen WX, Li H, Xu ZD (2009) Synthesis and characterization of MoS2 nanostructures with different morphologies via an ionic liquid-assisted hydrothermal route. Mater Chem Phys 116:400–405CrossRefGoogle Scholar
  278. 278.
    Shang S, Li L, Yang X, Zheng L (2009) Synthesis and characterization of poly(3-methyl thiophene) nanospheres in magnetic ionic liquid. J Colloid Interface Sci 333:415–418CrossRefGoogle Scholar
  279. 279.
    Alammar T, Mudring AV (2009) Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid. Mater Lett 63:732–735CrossRefGoogle Scholar
  280. 280.
    Wang Y, Yang H (2009) Synthesis of iron oxide nanorods and nanocubes in an imidazolium ionic liquid. Chem Eng J 147:71–78CrossRefGoogle Scholar
  281. 281.
    Redel E, Krämer J, Thomann R, Janiak C (2009) Synthesis of Co, Rh and Ir nanoparticles from metal carbonyls in ionic liquids and their use as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene. J Organomet Chem 694:1069–1075CrossRefGoogle Scholar
  282. 282.
    Li L, Huang Y, Yan G, Liu F, Huang Z, Ma Z (2009) Poly(3,4-ethylenedioxythiophene) nanospheres synthesized in magnetic ionic liquid. Mater Lett 63:8–10CrossRefGoogle Scholar
  283. 283.
    Zhai Y, Zhang Q, Liu F, Gao G (2008) Synthesis of nanostructure rutile TiO2 in a carboxyl-containing ionic liquid. Mater Lett 62:4563–4565CrossRefGoogle Scholar
  284. 284.
    Xu X, Zhang M, Feng J, Zhang M (2008) Shape-controlled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid. Mater Lett 62:2787–2790CrossRefGoogle Scholar
  285. 285.
    Haldorai Y, Lyoo WS, Noh SK, Shim JJ (2010) Ionic liquid mediated synthesis of silica/polystyrene core-shell composite nanospheres by radical dispersion polymerization. React Funct Polym 70:393–399CrossRefGoogle Scholar
  286. 286.
    Li X, Gao Y, Yu L, Zheng L (2010) Template-free synthesis of CdS hollow nanospheres based on an ionic liquid assisted hydrothermal process and their application in photocatalysis. J Solid State Chem 183:1423–1432CrossRefGoogle Scholar
  287. 287.
    Xia J, Li H, Luo Z, Xu H, Wang K, Yin S, Yana Y (2010) Self-assembly and enhanced optical absorption of Bi2WO6 nests via ionic liquid-assisted hydrothermal method. Mater Chem Phys 121:6–9CrossRefGoogle Scholar
  288. 288.
    Alammar T, Birkner A, Shekhah O, Mudring AV (2010) Sonochemical preparation of TiO2 nanoparticles in the ionic liquid 1-(3-hydroxypropyl)-3-methylimidazolium-bis(trifluoromethylsulfonyl)amide. Mater Chem Phys 120:109–113CrossRefGoogle Scholar
  289. 289.
    Ju M, Li Q, Gu J, Xu R, Li Y, Wang X, Wang E (2010) Polyoxometalate-assisted electrochemical deposition of ZnO spindles in an ionic liquid. Mater Lett 64:643–645CrossRefGoogle Scholar
  290. 290.
    Xia J, Li H, Luo Z, Wang K, Yin S, Yan Y (2010) Ionic liquid-assisted hydrothermal synthesis of three-dimensional hierarchical CuO peachstone-like architectures. Appl Surf Sci 256:1871–1877CrossRefGoogle Scholar
  291. 291.
    Luo H, Zou D, Zhou L, Ying T (2009) Ionic liquid-assisted synthesis of transition metal oxalates via one-step solid-state reaction. J Alloys Compd 481:L12–L14CrossRefGoogle Scholar
  292. 292.
    Gautam UK, Bando Y, Zhan J, Costa PMFJ, Fang XS, Golberg D (2008) Ga-doped ZnS nanowires as precursors for ZnO/ZnGa2O4 nanotubes. Adv Mater 20:810–814CrossRefGoogle Scholar
  293. 293.
    Li Z, Luan Y, Mu T, Chen G (2009) Unusual nanostructured ZnO particles from an ionic liquid precursor. Chem Commun 1258–1260Google Scholar
  294. 294.
    Sadeghzadeh H, Morsali A, Retailleau P (2010) Ultrasonic-assisted synthesis of two new nano-structured 3D lead(II) coordination polymers: precursors for preparation of PbO nano-structures. Polyhedron 29:925–933CrossRefGoogle Scholar
  295. 295.
    Langi B, Shah C, Singh K, Chaskar A, Kumar M, Bajaj PN (2010) Ionic liquid-induced synthesis of selenium nanoparticles. Mater Res Bull 45:668–671CrossRefGoogle Scholar
  296. 296.
    Pujari AA, Chadbourne JJ, Ward AJ, Costanzo L, Masters AF, Maschmeyer T (2009) The use of acidic task-specific ionic liquids in the formation of high surface area mesoporous silica. New J Chem 33:1997–2000CrossRefGoogle Scholar
  297. 297.
    Pang J, Luan Y, Li F, Cai X, Li Z (2010) Ionic liquid-assisted synthesis of silica particles and their application in drug release. Mater Lett 64:2509–2512CrossRefGoogle Scholar
  298. 298.
    Wheatley PS, Allan PK, Teat SJ, Ashbrook SE, Morris RE (2010) Task specific ionic liquids for the ionothermal synthesis of siliceous zeolites. Chem Sci 1:483–487CrossRefGoogle Scholar
  299. 299.
    Quijano G, Couvert A, Amrane A (2010) Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol 101:8923–8930CrossRefGoogle Scholar
  300. 300.
    Dong WS, Li MY, Liu C, Lin F, Liu Z (2008) Novel ionic liquid assisted synthesis of SnO2 microspheres. J Colloid Interface Sci 319:115–122CrossRefGoogle Scholar
  301. 301.
    Xiao W, Chen Q, Wu Y, Wu T, Dai L (2010) Ferromagnetism of Zn0.95Mn0.05O controlled by concentration of zinc acetate in ionic liquid precursor. Mater Chem Phys 123:1–4CrossRefGoogle Scholar
  302. 302.
    Yang Y, Qiu S, He C, He W, Yu L, Xie X (2010) Green chemical functionalization of multiwalled carbon nanotubes with poly(ε-caprolactone) in ionic liquids. Appl Surf Sci 257:1010–1014CrossRefGoogle Scholar
  303. 303.
    Gao H, Guo C, Xing J, Zhao J, Liu H (2010) Extraction and oxidative desulfurization of diesel fuel catalyzed by a Brønsted acidic ionic liquid at room temperature. Green Chem 12:1220–1224CrossRefGoogle Scholar
  304. 304.
    Zhai L, Zhong Q, He C, Wang J (2010) Hydroxyl ammonium ionic liquids synthesized by water-bath microwave: synthesis and desulfurization. J Hazard Mater 177:807–813CrossRefGoogle Scholar
  305. 305.
    Kimura A, Taguchi M, Kondoh T, Yang J, Nagaishi R, Yoshida Y, Hirota K (2010) Decomposition of halophenols in room-temperature ionic liquids by ionizing radiation. Radiat Phys Chem 79:1159–1164CrossRefGoogle Scholar
  306. 306.
    Park KI, Xanthos M (2009) A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym Degrad Stab 94:834–844CrossRefGoogle Scholar
  307. 307.
    Lee JS, Mayes RT, Luo H, Dai S (2010) Ionothermal carbonization of sugars in a protic ionic liquid under ambient conditions. Carbon 48:3364–3368CrossRefGoogle Scholar
  308. 308.
    Hu X, Hu K, Zeng L, Zhao M, Huang H (2010) Hydrogels prepared from pineapple peel cellulose using ionic liquid and their characterization and primary sodium salicylate release study. Carbohyd Polym 82:62–68CrossRefGoogle Scholar
  309. 309.
    Feng Z, Cheng-Gang F, You-Ting W, Yuan-Tao W, Ai-Min L, Zhi-Bing Z (2010) Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA. Chem Eng J 160:691–697CrossRefGoogle Scholar
  310. 310.
    Likhanova NV, Domínguez-Aguilar MA, Olivares-Xometl O, Nava-Entzana N, Arce E, Dorantes H (2010) The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment. Corros Sci 52:2088–2097CrossRefGoogle Scholar
  311. 311.
    Zhang QB, Hua YX (2010) Corrosion inhibition of aluminum in hydrochloric acid solution by alkylimidazolium ionic liquids. Mater Chem Phys 119:57–64CrossRefGoogle Scholar
  312. 312.
    Ashassi-Sorkhabi H, Es’haghi M (2009) Corrosion inhibition of mild steel in acidic media by [BMIm]Br Ionic liquid. Mater Chem Phys 114:267–271CrossRefGoogle Scholar
  313. 313.
    Lisenkov A, Zheludkevich ML, Ferreira MGS (2010) Active protective Al-Ce alloy coating electrodeposited from ionic liquid. Electrochem Commun 12:729–732CrossRefGoogle Scholar
  314. 314.
    Watanabe H (2010) The study of factors influencing the depolymerisation of cellulose using a solid catalyst in ionic liquids. Carbohyd Polym 80:1168–1171CrossRefGoogle Scholar
  315. 315.
    Wang H, Yan R, Li Z, Zhang X, Zhang S (2010) Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly(ethylene terephthalate). Catal Commun 11:763–767CrossRefGoogle Scholar
  316. 316.
    Xiao C, Wibisono N, Adidharma H (2010) Dialkylimidazolium halide ionic liquids as dual function inhibitors for methane hydrate. Chem Eng Sci 65:3080–3087CrossRefGoogle Scholar
  317. 317.
    Pang J, Luan Y, Wang Q, Du J, Cai X, Li Z (2010) Microwave-assistant synthesis of inorganic particles from ionic liquid precursors. Colloids Surf A Physicochem Eng Aspects 360:6–12CrossRefGoogle Scholar
  318. 318.
    Park TJ, Lee SH, Simmons TJ, Martin JG, Mousa SA, Snezhkova EA, Sarnatskaya VV, Nikolaev VG, Linhardt RJ (2008) Heparin-cellulose-charcoal composites for drug detoxification prepared using room temperature ionic liquids. Chem Commun 5022–5024Google Scholar
  319. 319.
    Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448CrossRefGoogle Scholar
  320. 320.
    Schmidt-Naake G, Schmalfuß A, Woecht I (2008) Free radical polymerization in ionic liquids-influence of the IL-concentration and temperature. Chem Eng Res Des 86:765–774CrossRefGoogle Scholar
  321. 321.
    Hou C, Qu R, Sun C, Ji C, Wang C, Ying L, Jiang N, Xiu F, Chen L (2008) Novel ionic liquids as reaction medium for ATRP of acrylonitrile in the absence of any ligand. Polymer 49:3424–3427CrossRefGoogle Scholar
  322. 322.
    Li Z, Luan Y, Wang Q, Zhuang G, Qi Y, Wang Y, Wang C (2009) ZnO nanostructure construction on zinc foil: the concept from an ionic liquid precursor aqueous solution. Chem Commun 6273–6275Google Scholar
  323. 323.
    Xie M, Kong Y, Han H, Shi J, Ding L, Song C, Zhang Y (2008) Amphiphilic ABA triblock copolymers via combination of ROMP and ATRP in ionic liquid: synthesis, characterization, and self-assembly. React Funct Polym 68:1601–1608CrossRefGoogle Scholar
  324. 324.
    Puttick S, Irvine DJ, Licence P, Thurecht KJ (2009) RAFT-functional ionic liquids: towards understanding controlled free radical polymerisation in ionic liquids. J Mater Chem 19:2679–2682CrossRefGoogle Scholar
  325. 325.
    Dukuzeyezu EM, Lefebvre H, Tessier M, Fradet A (2010) Synthesis of high molar mass poly(12-hydroxydodecanoic acid) in Brønsted acid ionic liquids. Polymer 51:1218–1221CrossRefGoogle Scholar
  326. 326.
    Dong B, Song D, Zheng L, Xu J, Li N (2009) Electrosynthesis of polyfluorene in an ionic liquid and characterization of its stable electrocatalytic activity for formic acid oxidation. J Electroanal Chem 633:63–70CrossRefGoogle Scholar
  327. 327.
    Eker B, Zagorevski D, Zhu G, Linhardt RJ, Dordick JS (2009) Enzymatic polymerization of phenols in room-temperature ionic liquids. J Mol Catal B Enzym 59:177–184CrossRefGoogle Scholar
  328. 328.
    Mallakpour S, Rafiee Z (2008) Use of ionic liquid and microwave irradiation as a convenient, rapid and eco-friendly method for synthesis of novel optically active and thermally stable aromatic polyamides containing N-phthaloyl-L-alanine pendent group. Polym Degrad Stab 93:753–759CrossRefGoogle Scholar
  329. 329.
    Mallakpour S, Rafiee Z (2008) Safe and fast polyamidation of 5-[4-(2-phthalimidiylpropanoylamino)-benzoylamino]isophthalic acid with aromatic diamines in ionic liquid under microwave irradiation. Polymer 49:3007–3013CrossRefGoogle Scholar
  330. 330.
    Andrzejewska E, Podgorska-Golubska M, Stepniak I, Andrzejewski M (2009) Photoinitiated polymerization in ionic liquids: kinetics and viscosity effects. Polymer 50:2040–2047CrossRefGoogle Scholar
  331. 331.
    Biso M, Mastragostino M, Montanino M, Passerini S, Soavi F (2008) Electropolymerization of poly(3-methylthiophene) in pyrrolidinium-based ionic liquids for hybrid supercapacitors. Electrochim Acta 53:7967–7971CrossRefGoogle Scholar
  332. 332.
    Dong B, Xing Y, Xu J, Zheng L, Hou J, Zhao F (2008) Electrosyntheses of free-standing and highly conducting polyselenophene films in an ionic liquid. Electrochim Acta 53:5745–5751CrossRefGoogle Scholar
  333. 333.
    Vijayaraghavan R, Pringle JM, MacFarlane DR (2008) Anionic polymerization of styrene in ionic liquids. Eur Polym J 44:1758–1762CrossRefGoogle Scholar
  334. 334.
    Zhang N, Liu QY, Wang YL, Shan ZM, Yang EL, Hu HC (2010) Ionothermal syntheses of two coordination polymers constructed from 5-sulfoisophthalic acid ligands with 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid as solvent. Inorg Chem Commun 13:706–710CrossRefGoogle Scholar
  335. 335.
    Poole CF, Poole SK (2010) Extraction of organic compounds with room temperature ionic liquids. J Chromatogr A 1217:2268–2286CrossRefGoogle Scholar
  336. 336.
    Gómez E, Domínguez I, Calvar N, Domínguez Á (2010) Separation of benzene from alkanes by solvent extraction with 1-ethylpyridinium ethylsulfate ionic liquid. J Chem Thermodyn 42:1234–1239CrossRefGoogle Scholar
  337. 337.
    Simoni LD, Chapeaux A, Brennecke JF, Stadtherr MA (2010) Extraction of biofuels and biofeedstocks from aqueous solutions using ionic liquids. Comput Chem Eng 34:1406–1412CrossRefGoogle Scholar
  338. 338.
    González EJ, González B, Calvar N, Domínguez A (2010) Application of [EMpy][ESO4] ionic liquid as solvent for the liquid extraction of xylenes from hexane. Fluid Phase Equilibria 295:249–254CrossRefGoogle Scholar
  339. 339.
    Francisco M, Arce A, Soto A (2010) Ionic liquids on desulfurization of fuel oils. Fluid Phase Equilibria 294:39–48CrossRefGoogle Scholar
  340. 340.
    Yoon SJ, Lee JG, Tajima H, Yamasaki A, Kiyono F, Nakazato T, Tao H (2010) Extraction of lanthanide ions from aqueous solution by bis(2-ethylhexyl)phosphoric acid with room-temperature ionic liquids. J Ind Eng Chem 16:350–354Google Scholar
  341. 341.
    Tang F, Zhang Q, Ren D, Nie Z, Liu Q, Yao S (2010) Functional amino acid ionic liquids as solvent and selector in chiral extraction. J Chromatogr A 1217:4669–4674CrossRefGoogle Scholar
  342. 342.
    Kogelnig D, Stojanovic A, Jirsa F, Körner W, Krachler R, Keppler BK (2010) Transport and separation of iron(III) from nickel(II) with the ionic liquid trihexyl(tetradecyl)phosphonium chloride. Sep Purif Technol 72:56–60CrossRefGoogle Scholar
  343. 343.
    Gorri D, Ruiz A, Ortiz A, Ortiz I (2009) The use of ionic liquids as efficient extraction medium in the reactive separation of cycloolefins from cyclohexane. Chem Eng J 154:241–245CrossRefGoogle Scholar
  344. 344.
    Jalili AH, Mehdizadeh A, Shokouhi M, Ahmadi AN, Hosseini-Jenab M, Fateminassab F (2010) Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. J Chem Thermodyn 42:1298–1303CrossRefGoogle Scholar
  345. 345.
    Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971CrossRefGoogle Scholar
  346. 346.
    Feng L, Chen Z (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liquids 142:1–5CrossRefGoogle Scholar
  347. 347.
    Boros E, Earle MJ, Gılea MA, Metlen A, Mudring AV, Rieger F, Robertson AJ, Seddon KR, Tomaszowska AA, Trusov L, Vyle JS (2010) On the dissolution of non-metallic solid elements (sulfur, selenium, tellurium and phosphorus) in ionic liquids. Chem Commun 46:716–718CrossRefGoogle Scholar
  348. 348.
    Li G, Zhou Q, Zhang X, Wang L, Zhang S, Li J (2010) Solubilities of ammonia in basic imidazolium ionic liquids. Fluid Phase Equilibria 297:34–39CrossRefGoogle Scholar
  349. 349.
    Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interactions with cellulose. Chem Rev 108:6712–6728CrossRefGoogle Scholar
  350. 350.
    Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholma R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids-a review. Ind Crops Prod 32:175–201CrossRefGoogle Scholar
  351. 351.
    Carvalho PJ, Álvarez VH, Marrucho IM, Aznar M, Coutinho JAP (2010) High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids. J Supercrit Fluid 52:258–265CrossRefGoogle Scholar
  352. 352.
    Rosol ZP, German NJ, Gross SM (2009) Solubility, ionic conductivity and viscosity of lithium salts in room temperature ionic liquids. Green Chem 11:1453–1457CrossRefGoogle Scholar
  353. 353.
    Cornils B (1997) Fluorous biphase systems-the new phase-separation and immobilization technique. Angew Chem Int Ed 36:2057–2059CrossRefGoogle Scholar
  354. 354.
    Curran DP (1998) Strategy-level separations in organic synthesis: from planning to practice. Angew Chem Int Ed 37:1174–1196CrossRefGoogle Scholar
  355. 355.
    Barthel-Rosa LP, Gladysz JA (1999) Chemistry in fluorous media: a user’s guide to practical considerations in the application of fluorous catalysts and reagents. Coord Chem Rev 192:587–605CrossRefGoogle Scholar
  356. 356.
    Cavazzini M, Montanari F, Pozzi G, Quici S (1999) Perfluorocarbon-soluble catalysts and reagents and the application of FBS (fluorous biphase system) to organic synthesis. J Fluorine Chem 94:183–193CrossRefGoogle Scholar
  357. 357.
    Kitazume T (2000) Green chemistry development in fluorine science. J Fluorine Chem 105:265–278CrossRefGoogle Scholar
  358. 358.
    Curran D (2001) Fluorous techniques for the synthesis and separation of organic molecules. Green Chem 3(1):G3–G7CrossRefGoogle Scholar
  359. 359.
    Gladysz JA, Curran DP, Horvath IT (2004) Handbook of fluorous chemistry. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  360. 360.
    Hobbs HR, Thomas NR (2007) Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions. Chem Rev 107:2786–2820CrossRefGoogle Scholar
  361. 361.
    Zhang W, Cai C (2008) New chemical and biological applications of fluorous technologies. Chem Commun 5686–5694Google Scholar
  362. 362.
    Zhang W (2009) Green chemistry aspects of fluorous techniques-opportunities and challenges for small-scale organic synthesis. Green Chem 11:911–920CrossRefGoogle Scholar
  363. 363.
    O’Neal KL, Zhang H, Yang Y, Hong L, Lu D, Weber SG (2009) Fluorous media for extraction and transport. J Chromatogr A 1217:2287–2295CrossRefGoogle Scholar
  364. 364.
    Bailey VA, Clarke D, Routledge A (2010) Extraction of perfluorinated compounds from food matrices using fluorous solvent partitioning. J Fluorine Chem 131:691–697CrossRefGoogle Scholar
  365. 365.
    Liu S, Xiao J (2007) Toward green catalytic synthesis-transition metal-catalyzed reactions in non-conventional media. J Mol Catal A Chem 270:1–43CrossRefGoogle Scholar
  366. 366.
    Hong M, Cai C, Yi WB (2010) Hafnium (IV) bis(perfluorooctanesulfonyl)imide complex catalyzed synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction in fluorous medium. J Fluorine Chem 131:111–114CrossRefGoogle Scholar
  367. 367.
    Yi WB, Cai C (2008) Polymer-supported ytterbium perfluorooctanesulfonate [Yb(OPf)3]: a recyclable catalyst for organic reactions. J Fluorine Chem 129:524–528CrossRefGoogle Scholar
  368. 368.
    Shen MG, Cai C, Yi WB (2008) Ytterbium perfluorooctanesulfonate as an efficient and recoverable catalyst for the synthesis of trisubstituted imidazoles. J Fluorine Chem 129:541–544CrossRefGoogle Scholar
  369. 369.
    Theberge AB, Whyte G, Frenzel M, Fidalgo LM, Wootton RCR, Huck WTS (2009) Suzuki-Miyaura coupling reactions in aqueous microdroplets with catalytically active fluorous interfaces. Chem Commun 6225–6227Google Scholar
  370. 370.
    Benaissi K, Poliakoff M, Thomas NR (2010) Solubilisation of α-chymotrypsin by hydrophobic ion pairing in fluorous systems and supercritical carbon dioxide and demonstration of efficient enzyme recycling. Green Chem 12:54–59CrossRefGoogle Scholar
  371. 371.
    Hong M, Cai C (2009) Sc[N(SO2C8F17)2]3 catalyzed condensation of β-naphthol and aldehydes in fluorous solvent: One-pot synthesis of 14-substituted-14H-dibenzo[a, j]xanthenes. J Fluorine Chem 130:989–992CrossRefGoogle Scholar
  372. 372.
    Mandal D, Gladysz JA (2010) Syntheses of fluorous quaternary ammonium salts and their application as phase transfer catalysts for halide substitution reactions in extremely nonpolar fluorous solvents. Tetrahedron 66:1070–1077CrossRefGoogle Scholar
  373. 373.
    Xu BL, Chen JP, Qiao RZ, Fu DC (2008) Facile and efficient synthesis of 2-substituted-N1-carbethoxy-2,3-dihydro-4(1H)-quinazolinones in fluorous solvent. Chinese Chem Lett 19:537–540CrossRefGoogle Scholar
  374. 374.
    Zhu Y, Ford WT (2009) Hydrolysis of p-nitrophenyl esters in mixtures of water and a fluorous solvent. Langmuir 25:3435–3439CrossRefGoogle Scholar
  375. 375.
    Chu Q, Yu MS, Curran DP (2008) CBS reductions with a fluorous prolinol immobilized in a hydrofluoroether solvent. Org Lett 10:749–752CrossRefGoogle Scholar
  376. 376.
    Hollamby MJ, Eastoe J, Mutch KJ, Rogers S, Heenan RK (2010) Fluorinated microemulsions as reaction media for fluorous nanoparticles. Soft Matter 6:971–976CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Organic Polymer Chemistry Research Laboratory, Department of ChemistryIsfahan University of TechnologyIsfahanI. R. Iran
  2. 2.Nanotechnology and Advanced Materials InstituteIsfahan University of TechnologyIsfahanI. R. Iran
  3. 3.Department of ChemistryYasouj UniversityYasoujI. R. Iran

Personalised recommendations