Vibration Testing for the Evaluation of the Effects of Moisture Content on the In-Plane Elastic Constants of Wood Used in Musical Instruments

  • M. A. Pérez MartínezEmail author
  • P. Poletti
  • L. Gil Espert


The present work provides an experimental-numerical investigation into the effects of moisture content on the in-plane elastic constants of wood for the specific use of the construction of soundboards of musical instruments. The vibrational behavior of a rectangular plate of spruce has been observed using vibration testing under different humidity conditions. The use of a nondestructive test method permits direct examination of a material sample which will eventually become part of a real instrument. The proposed approach is intended to minimize the difference between the numerical and experimental dynamic response through an iterative process, which allows identifying the elastic characteristics of wood specimens. It has been demonstrated that the vibrational behavior of timber varies considerably with variations in humidity. However, not all elastic properties are equally affected by such changes. The most significant variation is found in the transverse elastic modulus, and consequently in resonance modes associated therewith.


Mode Shape Rectangular Plate Frequency Response Function Musical Instrument Free Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alfano, M., Pagnotta, L.: Determining the elastic constants of isotropic materials by modal vibration testing of rectangular thin plates. J. Sound Vib. (2006). doi: 10.1016/j.jsv.2005.10.021 Google Scholar
  2. 2.
    Araújo, A.L., Mota Soares, C.M., Moreira de Freitas, M.J.: Characterization of material parameters of composite plate specimens using optimization and experimental vibrational data. Compos. Part B Eng. (1996). doi: 10.1016/1359-8368(95)00050-X Google Scholar
  3. 3.
    Ayorinde, E.O., Gibson, R.F.: Elastic constants of orthotropic composite materials using plate resonance frequencies, classical lamination theory and an optimized three-mode Rayleigh formulation. Compos. Eng. (1993). doi: 10.1016/0961-9526(93)90077-W Google Scholar
  4. 4.
    Ayorinde, E.O., Yu, L.: On the elastic characterization of composite plates with vibration data. J. Sound Vib. (2005). doi: 10.1016/j.jsv.2004.04.026 Google Scholar
  5. 5.
    Bathe, K.J.: Finite Element Procedures. Prentice Hall, New York (1996) Google Scholar
  6. 6.
    Bell, J.F.: Mechanics of Solids: Volume 1—The Experimental Foundations of Solid Mechanics. Springer, Berlin (1973) Google Scholar
  7. 7.
    Cousins, W.J.: Elastic modulus of lignin as related to moisture content. Wood Sci. Technol. (1976). doi: 10.1007/BF00376380 zbMATHGoogle Scholar
  8. 8.
    Cousins, W.J.: Young’s modulus of hemicellulose as related to moisture content. Wood Sci. Technol. (1978). doi: 10.1007/BF00372862 Google Scholar
  9. 9.
    Deobald, R.L., Gibson, R.F.: Determination of elastic constants of orthotropic plates by a modal analysis/Rayleigh-Ritz technique. J. Sound Vib. (1988). doi: 10.1016/S0022-460X(88)80187-1 Google Scholar
  10. 10.
    De Visscher, J., Sol, H., De Wilde, W.P., Vantomme, J.: Identification of the damping properties of orthotropic composite materials using a mixed numerical experimental method. Appl. Compos. Mat. (1997). doi: 10.1007/BF02481386 Google Scholar
  11. 11.
    Ewins, D.J.: Modal Testing: Theory and Practice. Research Studies Press, Baldock (1986) Google Scholar
  12. 12.
    Fällström, K.E., Jonsson, M.A.: Determining material properties in anisotropic plates using Rayleigh’s method. Polym. Compos. (1991). doi: 10.1002/pc.750120503 Google Scholar
  13. 13.
    Felippa, C.: Introduction to finite element methods. (2009). Cited Jun 2010
  14. 14.
    Ferreira, A.J.M.: MATLAB Codes for Finite Element Analysis. Springer, Berlin (2009). doi: 10.1007/978-1-4020-9200-8 zbMATHGoogle Scholar
  15. 15.
    Grédiac, M., Paris, P.A.: Direct identification of elastic constants of anisotropic plates by modal analysis: theoretical and numerical aspects. J. Sound Vib. (1996). doi: 10.1006/jsvi.1996.0434 zbMATHGoogle Scholar
  16. 16.
    Grédiac, M., Fournier, N., Paris, P.A., Surrel, Y.: Direct identification of elastic constants of anisotropic plates by modal analysis: experimental results. J. Sound Vib. (1998). doi: 10.1006/jsvi.1997.1304 zbMATHGoogle Scholar
  17. 17.
    Haines, D.W.: On musical instrument wood, Part I. J. Catgut. Acoust. Soc. (1979). Published in [22], paper 88 Google Scholar
  18. 18.
    Haines, D.W.: On musical instrument wood, Part II: surface finishes, plywood, light and water exposure. J. Catgut. Acoust. Soc. (1980). Published in [22], paper 89 Google Scholar
  19. 19.
    Harris, C.M., Piersol, A.G.: Harris’ Shock and Vibration Handbook. McGraw-Hill, New York (2002) Google Scholar
  20. 20.
    Häglund, M.: Parameter influence on moisture induced eigen-stresses in timber. Eur. J. Wood Prod. (2009). doi: 10.1007/s00107-009-0377-2 Google Scholar
  21. 21.
    Hanhijärvi, A.: Advances in the knowledge of the influence of moisture changes on the long-term mechanical performance of timber structures. Mater. Struct. (2000). doi: 10.1007/BF02481695 Google Scholar
  22. 22.
    Hutchins, C.M., Benade, V.: Research Papers in Violin Acoustics, 1973–1995. Acoust. Soc. Amer., USA (1996) Google Scholar
  23. 23.
    Hurlebaus, S., Gaul, L., Wang, J.T.S.: An exact series solution for calculating the eigenfrequencies of orthotropic plates with completely free boundary. J. Sound Vib. (2001). doi: 10.1006/jsvi.2000.3541 Google Scholar
  24. 24.
    Hurlebaus, S.: Calculation of eigenfrequencies for rectangular free orthotropic plates—an overview. J. Appl. Math. Mech. (2007). doi: 10.1002/zamm.200710349 zbMATHGoogle Scholar
  25. 25.
    Hwang, S.F., Chang, C.F.: Determination of elastic constants of materials by vibration testing. Compos. Struct. (2000). doi: 10.1016/S0263-8223(99)00132-4 Google Scholar
  26. 26.
    Jones, R.M.: Mechanics of Composite Materials. Taylor & Francis, London (1999) Google Scholar
  27. 27.
    Kwon, Y.W., Bang, H.: The Finite Element Method Using MATLAB. CRC Press, Boca Raton (1997) Google Scholar
  28. 28.
    Larsson, D.: Using modal analysis for estimation of anisotropic material constants. J. Eng. Mech. (1999). doi: 10.1061/(ASCE)0733-9399(1997)123:3(222) Google Scholar
  29. 29.
    Lauwagie, T.: Vibration-based methods for the identification of the elastic properties of layered materials. Ph.D. thesis, Katholieke Universiteit Leuven, Belgium (2005) Google Scholar
  30. 30.
    Leissa, A.W.: Vibration of Plates. Acoust. Soc. Amer., USA (1993) Google Scholar
  31. 31.
    Liew, K.M., Wang, C.M., Xiang, Y., Kitipornchai, S.: Vibration of Mindlin Plates: Programming the p-Version Ritz Method. Elsevier, Amsterdam (1998) zbMATHGoogle Scholar
  32. 32.
    Maia, N.M.M., Silva, J.M.M.: Theoretical and Experimental Modal Analysis. Research Studies Press, Baldock (1997) Google Scholar
  33. 33.
    McIntyre, M.E., Woodhouse, J.: On measuring the elastic and damping constants of orthotropic sheet materials. Acta Metall. (1988). doi: 10.1016/0001-6160(88)90209-X zbMATHGoogle Scholar
  34. 34.
    Molin, N.E., Lindgren, L.E.: Parameters of violin plates and their influence on the plate modes. J. Acoust. Soc. Am. (1988). doi: 10.1121/1.396430 zbMATHGoogle Scholar
  35. 35.
    Mota Soares, C.M., Moreira de Freitas, M., Araújo, A.L., Pedersen, P.: Identification of material properties of composite plate specimens. Compos. Struct. (1993). doi: 10.1016/0263-8223(93)90174-O Google Scholar
  36. 36.
    Ohlsson, S., Perstorper, M.: Elastic wood properties from dynamic tests and computer modeling. J. Struct. Eng. (1992). doi: 10.1061/(ASCE)0733-9445(1992)118:10(2677) Google Scholar
  37. 37.
    Pagnotta, L., Stigliano, G.: Elastic characterization of isotropic plates of any shape via dynamic tests: theoretical aspects and numerical simulations. Mech. Res. Commun. (2008). doi: 10.1016/j.mechrescom.2008.03.008 Google Scholar
  38. 38.
    Qing, H., Mishnaevsky, L.: Moisture-related mechanical properties of softwood: 3D micromechanical modeling. Comput. Mater. Sci. (2009). doi: 10.1016/j.commatsci.2009.03.008 Google Scholar
  39. 39.
    Rayleigh, J.W.S.: The Theory of Sound, vol. 1. Macmillan Co., New York (1877) (Reprinted by Dover Publications, New York (1945)) Google Scholar
  40. 40.
    Reddy, J.N.: Theory and Analysis of Elastic Plates. Taylor & Francis, London (1999) Google Scholar
  41. 41.
    Rodgers, O.E.: The effect of the elements of wood stiffness on violin plate vibration. J. Catgut. Acoust. Soc. (1988). Published in [22], paper 48 Google Scholar
  42. 42.
    Silva, C.W.: Vibration and Shock Handbook. CRC Press, Boca Raton (2005) zbMATHCrossRefGoogle Scholar
  43. 43.
    Sol, H.: Identification of anisotropic plate rigidities using free vibration data. Ph.D. thesis, University of Brussels, Belgium (1986) Google Scholar
  44. 44.
    Thompson, R.: The effect of variations in relative humidity on the frequency response of free violin plates. J. Catgut. Acoust. Soc. (1979). Published in [22], paper 53 Google Scholar
  45. 45.
    United States Department of Agriculture: The Encyclopedia of Wood. Skyhorse Publishing, New York (2007) Google Scholar
  46. 46.
    Voichita, B.: Acoustics of Wood. CRC Press, Boca Raton (1995) Google Scholar
  47. 47.
    Wegst, U.G.K.: Wood for sound. Am. J. Bot. 93(10), 1439–1448 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. A. Pérez Martínez
    • 1
    Email author
  • P. Poletti
    • 2
  • L. Gil Espert
    • 3
  1. 1.Department of Strength of Materials and StructuresUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Department of SonologyEscola Superior de Música de CatalunyaBarcelonaSpain
  3. 3.Laboratori per a la Innovació Tecnològica d’Estructures i MaterialsUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations