Ion Exchange Equilibria and Kinetics

  • Patrícia F. Lito
  • Simão P. Cardoso
  • José M. Loureiro
  • Carlos M. SilvaEmail author


The accurate modelling of equilibrium and kinetics of ion exchange is fundamental for economic and safe design of industrial units, particularly to carry out the delicate scale-up studies and simulations.

With regard to equilibrium, this chapter covers the following topics: (1) ion association phenomena; (2) activity coefficients in solution and exchanger phases; (3) the milestones works of Gaines and Thomas, Argersinger et al., and Ioannidis et al. to the thermodynamic treatment of ion exchange; and (4) a deep discussion of the three most important theories in the literature (homogeneous mass action models, ion adsorption and related models, and heterogeneous mass action models).

Concerning ion exchange kinetics and mass transport processes, the chapter reviews semiempirical models, Fick’s law and derived expressions, Nernst–Planck equations, and the Maxwell–Stefan formulation.

The chapter ends with the general modelling approaches to the omnipresent batch and fixed bed applications.


Activity Coefficient Intraparticle Diffusion Interdiffusion Coefficient Linear Driving Force Pitzer Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Smith JM, Ness HCV, Abbott MM (2000) Introduction to chemical engineering thermodynamics, 6th edn. McGraw-Hill, SingaporeGoogle Scholar
  2. 2.
    Zemaitis JF, Clark DM, Rafal M, Scrivner NC (1986) Handbook of aqueous electrolyte thermodynamics. ed. A.I.o.C. Engineers, New York, pp 64–66Google Scholar
  3. 3.
    Dranoff J, Lapidus L (1957) Equilibrium in ternary ion exchange systems. Ind Eng Chem 49(8):1297–1302Google Scholar
  4. 4.
    Pieroni LJ, Dranoff JS (1963) Ion exchange equilibria in a ternary system. Aiche J 9(1):42–45Google Scholar
  5. 5.
    Prausnitz JM, Lichtenthaler RN, Azevedo EG (1999) Molecular thermodynamics of fluid-phase equilibria. Prentice Hall, New JerseyGoogle Scholar
  6. 6.
    Pitzer KS, Peiper JC, Busey RH (1984) Thermodynamic properties of aqueous sodium chloride solutions. J Phys Chem Ref Data 13(1):1–102Google Scholar
  7. 7.
    Robinson RA, Stokes RH (1923) Electrolyte solutions. Butterworths, LondonGoogle Scholar
  8. 8.
    Bromley LA (1973) Thermodynamic properties of strong electrolytes in aqueous solutions. Aiche J 19(2):313–320Google Scholar
  9. 9.
    Pitzer KS (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. J Phys Chem 77(2):268–277Google Scholar
  10. 10.
    Meissner HP, Kusik CL (1972) Activity coefficients of strong electrolytes in multicomponent aqueous solutions. Aiche J 18(2):294–298Google Scholar
  11. 11.
    Kusik CL, Meissner HP (1978) Electrolyte activity coefficients in inorganic processing. AIChE Symp Ser 74(173):14–20Google Scholar
  12. 12.
    Poling BE, Prausnitz JM, O’Connel JP (2000) The properties of gases and liquids, 5th edn. McGraw-Hill, SingaporeGoogle Scholar
  13. 13.
    Wohl K (1946) Thermodynamic evaluation of binary and ternary liquid systems. Trans Am Inst Chem Eng 42(2):215–249Google Scholar
  14. 14.
    Kester DR, Pytkowicz RM (1975) Theoretical model for the formation of ion-pairs in seawater. Mar Chem 3(4):365–374Google Scholar
  15. 15.
    Vo BS, Shallcross DC (2005) Ion exchange equilibria data for systems involving H+, Na+, K+, Mg2+, and Ca2+ ions. J Chem Eng Data 50(3):1018–1029Google Scholar
  16. 16.
    Majer V, Stulík K (1982) A study of the stability of alkaline-earth metal complexes with fluoride and chloride ions at various temperatures by potentiometry with ion-selective electrodes. Talanta 29(2):145–148Google Scholar
  17. 17.
    Perrin DD, Högfeldt E, Sillen LG, Martell AE (1971) Stability constants of metal-ion complexes. Pergamon, Oxford, SupplementGoogle Scholar
  18. 18.
    Johnson KS, Pytkowicz RM (1979) Ion association of chloride and sulphate with sodium, potassium, magnesium and calcium in seawater at 25°C. Mar Chem 8(1):87–93Google Scholar
  19. 19.
    Atlas E, Culberson C, Pytkowicz RM (1976) Phosphate association with Na+, Ca2+ and Mg2+ in seawater. Mar Chem 4(3):243–254Google Scholar
  20. 20.
    De Robertis A, Rigano C, Sammartano S, Zerbinati O (1987) Ion association of Cl with Na+, K+, Mg2+ and Ca2+ in aqueous solution at 10 ≤ T ≤ 45°C and 0 ≤ I ≤ 1 mol L−1: a literature data analysis. Thermochimica Acta 115:241–248Google Scholar
  21. 21.
    Mehablia MA, Shallcross DC, Stevens GW (1994) Prediction of multicomponent ion exchange equilibria. Chem Eng Sci 49(14):2277–2286Google Scholar
  22. 22.
    Mumford KA, Shallcross DC, Snape I, Stevens GW (2008) Application of a temperature-dependent semiempirical thermodynamic ion-exchange model to a multicomponent natural zeolite system. Ind Eng Chem Res 47(21):8347–8354Google Scholar
  23. 23.
    Velayudhan A, Horváth C (1994) Adsorption and ion-exchange isotherms in preparative chromatography. J Chromatogr A 663(1):1–10Google Scholar
  24. 24.
    Shallcross DC (2003) Modelling multicomponent ion exchange equilibrium behaviour. J Ion Exch 14(Supp):5–8Google Scholar
  25. 25.
    Melis S, Cao G, Morbidelli M (1995) A new model for the simulation of ion exchange equilibria. Ind Eng Chem Res 34(11):3916–3924Google Scholar
  26. 26.
    Klein G, Tondeur D, Vermeulen T (1967) Multicomponent ion exchange in fixed beds. General properties of equilibrium systems. Ind Eng Chem Fundam 6(3):339–351Google Scholar
  27. 27.
    Smith RP, Woodburn ET (1978) Prediction of multicomponent ion exchange equilibria for the ternary system SO42−- NO3- Cl from data of binary systems. Aiche J 24(4):577–587Google Scholar
  28. 28.
    Sengupta M, Paul TB (1985) Multicomponent ion exchange equilibria. I. Zn2+−Cd2+−H+ and Cu2+−Ag+−H+ on Amberlite IR 120. React Polym Ion Exch Sorb 3(3):217–229Google Scholar
  29. 29.
    Shallcross DC, Herrmann CC, McCoy BJ (1988) An improved model for the prediction of multicomponent ion exchange equilibria. Chem Eng Sci 43(2):279–288Google Scholar
  30. 30.
    De Martínez AL, Cañizares P, Díaz JZ (1993) Binary ion exchange equilibrium for Ca2+, Mg2+, K+, Na+ and H+ ions on amberlite IR-120. Chem Eng Technol 16(1):35–39Google Scholar
  31. 31.
    Ioannidis S, Anderko A, Sanders SJ (2000) Internally consistent representation of binary ion exchange equilibria. Chem Eng Sci 55(14):2687–2698Google Scholar
  32. 32.
    Borba CE, Silva EA, Spohr S, Santos GHF, Guirardello R (2010) Ion exchange equilibrium prediction for the system Cu2+−Zn2+−Na+. J Chem Eng Data 55(3):1333–1341Google Scholar
  33. 33.
    Helfferich F (1995) Ion exchange. Dover, New YorkGoogle Scholar
  34. 34.
    Kataoka T, Yoshida H (1980) Ion exchange equilibria in ternary systems. J Chem Eng Japan 13(4):328–330Google Scholar
  35. 35.
    Elprince AM, Babcock KL (1975) Prediction of ion-exchange equilibria in aqueous systems with more than two counter-ions. Soil Sci 120(5):332–338Google Scholar
  36. 36.
    Shehata FA, El-Kamash AM, El-Sorougy MR, Aly HF (2000) Prediction of multicomponent ion-exchange equilibria for a ternary system from data of binary systems. Sep Sci Technol 35(12):1887–1900Google Scholar
  37. 37.
    de Lucas A, Valverde JL, Romero MC, Gómez J, Rodríguez JF (2002) The ion exchange equilibria of Na+/K+ in nonaqueous and mixed solvents on a strong acid cation exchanger. Chem Eng Sci 57(11):1943–1954Google Scholar
  38. 38.
    Vamos RJ, Haas CN (1994) Reduction of ion-exchange equilibria data using an error in variables approach. Aiche J 40(3):556–569Google Scholar
  39. 39.
    Pabalan RT, Bertetti FP (1999) Experimental and modeling study of ion exchange between aqueous solutions and the zeolite mineral clinoptilolite. J Sol Chem 28(4):367–393Google Scholar
  40. 40.
    Mumford KA, Northcott KA, Shallcross DC, Snape I, Stevens GW (2008) Comparison of amberlite IRC-748 resin and zeolite for copper and ammonium ion exchange. J Chem Eng Data 53(9):2012–2017Google Scholar
  41. 41.
    Carmona M, Warchoł J, Ad L, Rodriguez JF (2008) Ion-exchange equilibria of Pb2+, Ni2+, and Cr3+ ions for H+ on amberlite IR-120 resin. J Chem Eng Data 53(6):1325–1331Google Scholar
  42. 42.
    de Lucas A, Rodriguez L, Sanchez P, Lobato J (2003) Retention capacity of the builder δ-Na2Si2O5. Modeling the Ca2+/Mg2+/Na+ equilibrium. Ind Eng Chem Res 42(14):3257–3262Google Scholar
  43. 43.
    Robinson C, Gilliland E (1950) Elements of fractional distillation. McGraw-Hill, New YorkGoogle Scholar
  44. 44.
    De Lucas A, Zarca J, Cañizares P (1992) Ion-exchange equilibrium of Ca2+, Mg2+, K+, Na+, and H+ ions on amberlite IR-120: experimental determination and theoretical prediction of the ternary and quaternary equilibrium data. Sep Sci Technol 27(6):823–841Google Scholar
  45. 45.
    Vo BS, Shallcross DC (2005) Modeling solution phase behavior in multicomponent ion exchange equilibria involving H+, Na+, K+, Mg2+, and Ca2+ ions. J Chem Eng Data 50(6):1995–2002Google Scholar
  46. 46.
    Allen RM, Addison PA, Dechapunya AH (1989) The characterization of binary and ternary ion exchange equilibria. Chem Eng J 40(3):151–158Google Scholar
  47. 47.
    Allen RM, Addison PA (1990) Ion exchange equilibria for ternary systems from binary exchange data. Chem Eng J 44(3):113–118Google Scholar
  48. 48.
    Stewart WE, Liou CT, Lim HC, Weigand WA, Berger AJ, HÃla E (1972) Letters to the editor. AIChE J 18(4):875–876Google Scholar
  49. 49.
    Hála E (1972) Liquid–vapor equilibrium. LII. On boundary conditions between constants of Wilson and NRTL equations in three- and more component systems. Collect Czechoslovak Chem Commun 37:2817–2819Google Scholar
  50. 50.
    Bajpai RK, Gupta AK, Rao MG (1973) Binary and ternary ion-exchange equilibriums. Sodium-cesium-manganese-Dowex 50W-X8 and cesium-manganese-strontium-Dowex 50W-X8 systems. J Phys Chem 77(10):1288–1293Google Scholar
  51. 51.
    Argersinger WJ, Davidson AW, Bonner OD (1950) Thermodynamics and ion exchange phenomena. Kansas Acad Trans 53:404–410Google Scholar
  52. 52.
    Gaines JGL, Thomas HC (1953) Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. J Chem Phys 21(4):714–718Google Scholar
  53. 53.
    Provis JL, Lukey GC, Shallcross DC (2005) Modeling multicomponent ion exchange: application of the single-parameter binary system model. Ind Eng Chem Res 44(7):2250–2257Google Scholar
  54. 54.
    Ioannidis S, Anderko A (2001) Equilibrium modeling of combined ion-exchange and molecular adsorption phenomena. Ind Eng Chem Res 40(2):714–720Google Scholar
  55. 55.
    Fletcher P, Townsend RP (1981) Ternary ion exchange in Zeolites. Part 1. – problem of predicting equilibrium compositions. J Chem Soc Faraday Trans 2:77Google Scholar
  56. 56.
    Soldatov VS, Bychkova VA (1971) Calculation of activity coefficients of components of the ion exchanger phase in multicomponent systems. Russ J Phys Chem 45(5):707–709Google Scholar
  57. 57.
    Ioannidis S, Anderko A (2000) Equilibrium modeling of combined ion-exchange and molecular adsorption phenomena. Ind Eng Chem Res 40(2):714–720Google Scholar
  58. 58.
    Mehablia MA, Shallcross DC, Stevens GW (1996) Ternary and quaternary ion exchange equilibria. Sol Extract Ion Exch 14(2):309–322Google Scholar
  59. 59.
    Pabalan RT (1994) Thermodynamics of ion exchange between clinoptilolite and aqueous solutions of Na+/k+ and Na+/Ca2+. Geochim Cosmochim Acta 58(21):4573–4590Google Scholar
  60. 60.
    Barreira LD, Lito PF, Antunes BM, Otero M, Lin Z, Rocha J, Pereira E, Duarte AC, Silva CM (2009) Effect of pH on cadmium (II) removal from aqueous solution using titanosilicate ETS-4. Chem Eng J 155(3):728–735Google Scholar
  61. 61.
    Camarinha ED, Lito PF, Antunes BM, Otero M, Lin Z, Rocha J, Pereira E, Duarte AC, Silva CM (2009) Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-10. Chem Eng J 155(1–2):108–114Google Scholar
  62. 62.
    Ferreira TR, Lopes CB, Lito PF, Otero M, Lin Z, Rocha J, Pereira E, Silva CM, Duarte A (2009) Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-4. Chem Eng J 147(2–3):173–179Google Scholar
  63. 63.
    Lopes CB, Lito PF, Otero M, Lin Z, Rocha J, Silva CM, Pereira E, Duarte AC (2008) Mercury removal with titanosilicate ETS-4: batch experiments and modelling. Micropor Mesopor Mater 115(1–2):98–105Google Scholar
  64. 64.
    Lopes CB, Otero M, Coimbra J, Pereira E, Rocha J, Lin Z, Duarte A (2007) Removal of low concentration Hg2+ from natural waters by microporous and layered titanosilicates. Micropor Mesopor Mater 103(1–3):325–332Google Scholar
  65. 65.
    Lopes CB, Otero M, Lin Z, Silva CM, Pereira E, Rocha J, Duarte AC (2010) Effect of pH and temperature on Hg2+ water decontamination using ETS-4 titanosilicate. J Hazard Mater 175(1–3):439–444Google Scholar
  66. 66.
    Lopes CB, Otero M, Lin Z, Silva CM, Rocha J, Pereira E, Duarte AC (2009) Removal of Hg2+ ions from aqueous solution by ETS-4 microporous titanosilicate – kinetic and equilibrium studies. Chem Eng J 151(1–3):247–254Google Scholar
  67. 67.
    Otero M, Lopes CB, Coimbra J, Ferreira TR, Silva CM, Lin Z, Rocha J, Pereira E, Duarte AC (2009) Priority pollutants (Hg2+ and Cd2+) removal from water by ETS-4 titanosilicate. Desalination 249(2):742–747Google Scholar
  68. 68.
    Altin O, Özbelge HÖ, Dogu T (1998) Use of general purpose adsorption isotherms for heavy metal-clay mineral interactions. J Colloid Interface Sci 198(1):130–140Google Scholar
  69. 69.
    Petrus R, Warchol JK (2005) Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems. Water Res 39(5):819–830Google Scholar
  70. 70.
    Ku Y, Lee K-C, Wang W (2005) Removal of phenols from aqueous solutions by purolite A-510 resin. Sep Sci Technol 39(4):911–923Google Scholar
  71. 71.
    Carmona M, Lucas AD, Valverde JL, Velasco B, Rodríguez JF (2006) Combined adsorption and ion exchange equilibrium of phenol on Amberlite IRA-420. Chem Eng J 117(2):155–160Google Scholar
  72. 72.
    Caetano M, Valderrama C, Farran A, Cortina JL (2009) Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins. J Colloid Interface Sci 338(2):402–409Google Scholar
  73. 73.
    Myers AL, Byington S (1986) Thermodynamics of ion exchange: prediction of multicomponent equilibria from binary data. In: Rodrigues AE (ed) Ion exchange: science and technology. Martinus Nijhoff, Dordrecht, pp 119–145Google Scholar
  74. 74.
    Novosad J, Myers AL (1982) Thermodynamics of ion exchange as an adsorption process. Can J Chem Eng 60(4):500–503Google Scholar
  75. 75.
    Sircar S, Myers AL (1971) A thermodynamic consistency test for adsorption from binary liquid mixtures on solids. AIChE J 17(1):186–190Google Scholar
  76. 76.
    Harned HS, Owen BB (1958) The physical chemistry of electrolytic solutions, 3rd edn. Reinhold, New YorkGoogle Scholar
  77. 77.
    Saunders MS, Vierow JB, Carta G (1989) Uptake of phenylalanine and tyrosine by a strong-acid cation exchanger. AIChE J 35(1):53–68Google Scholar
  78. 78.
    Dye SR, Decarli JP, Carta G (1990) Equilibrium sorption of amino-acids by a cation-exchange resin. Ind Eng Chem Res 29(5):849–857Google Scholar
  79. 79.
    Zammouri A, Chanel S, Muhr L, Grevillot G (2000) Ion-exchange equilibria of amino acids on strong anionic resins. Ind Eng Chem Res 39(5):1397–1408Google Scholar
  80. 80.
    Jones IL, Carta G (1993) Ion exchange of amino acids and dipeptides on cation resins with varying degree of crosslinking. 1. Equilibrium. Ind Eng Chem Res 32(1):107–117Google Scholar
  81. 81.
    Moreira MJA, Ferreira LMGA (2005) Equilibrium studies of phenylalanine and tyrosine on ion-exchange resins. Chem Eng Sci 60(18):5022–5034Google Scholar
  82. 82.
    de Kock FP, van Deventer JSJ (1995) Statistical thermodynamic model for competitive ion exchange. Chem Eng Commun 135(1):21–45Google Scholar
  83. 83.
    Lukey GC, Van Deventer JSJ, Shallcross DC (2000) Equilibrium model for the selective sorption of gold cyanide on different ion-exchange functional groups. Minerals Eng 13(12):1243–1261Google Scholar
  84. 84.
    Lukey GC, Van Deventer JSJ, Shallcross DC (2001) Equilibrium model for the sorption of gold cyanide and copper cyanide on trimethylamine ion exchange resin in saline solutions. Hydrometallurgy 59(1):101–113Google Scholar
  85. 85.
    Provis JL, Lukey GC, Shallcross DC (2004) Single-parameter model for binary ion-exchange equilibria. Ind Eng Chem Res 43(24):7870–7879Google Scholar
  86. 86.
    Barrer RM, Meier WM (1959) Exchange equilibria in a synthetic crystalline exchanger. Trans Faraday Soc 55:130–141Google Scholar
  87. 87.
    Melis S, Markos J, Cao G, Morbidelli M (1996) Multicomponent equilibria on ion-exchange resins. Fluid Phase Equilibria 117(1–2):281–288Google Scholar
  88. 88.
    Valverde JL, de Lucas A, Rodriguez JF (1998) Comparison between heterogeneous and homogeneous MASS action models in the prediction of ternary ion exchange equilibria. Ind Eng Chem Res 38(1):251–259Google Scholar
  89. 89.
    Namasivayam C, Senthilkumar S (1998) Removal of arsenic(V) from aqueous solution using industrial solid waste: adsorption rates and equilibrium studies. Ind Eng Chem Res 37(12):4816–4822Google Scholar
  90. 90.
    Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465Google Scholar
  91. 91.
    Ho YS, McKay G (1999) The sorption of lead(II) ions on peat. Water Res 33(2):578–584Google Scholar
  92. 92.
    Reddad Z, Gerente C, Andres Y, Le Cloirec P (2002) Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol 36(9):2067–2073Google Scholar
  93. 93.
    Yardim MF, Budinova T, Ekinci E, Petrov N, Razvigorova M, Minkova V (2003) Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural. Chemosphere 52(5):835–841Google Scholar
  94. 94.
    Chiron N, Guilet R, Deydier E (2003) Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models. Water Res 37(13):3079–3086Google Scholar
  95. 95.
    Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40(3–4):997–1026Google Scholar
  96. 96.
    Zhang F-S, Nriagu JO, Itoh H (2005) Mercury removal from water using activated carbons derived from organic sewage sludge. Water Res 39:389–395Google Scholar
  97. 97.
    Chen S, Yue Q, Gao B, Xu X (2010) Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue. J Colloid Interface Sci 349(1):256–264Google Scholar
  98. 98.
    Edebali S, Pehlivan E (2010) Evaluation of amberlite IRA96 and Dowex 1x8 ion-exchange resins for the removal of Cr(VI) from aqueous solution. Chem Eng J 161(1–2):161–166Google Scholar
  99. 99.
    Faghihian H, Kabiri-Tadi M (2010) Removal of zirconium from aqueous solution by modified clinoptilolite. J Hazard Mater 178(1–3):66–73Google Scholar
  100. 100.
    Ofomaja AE, Naidoo EB, Modise SJ (2010) Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder. J Environ Manage 91(8):1674–1685Google Scholar
  101. 101.
    Wahab MA, Jellali S, Jedidi N (2010) Effect of temperature and pH on the biosorption of ammonium onto Posidonia oceanica fibers: equilibrium, and kinetic modeling studies. Bioresour Technol 101(22):8606–8615Google Scholar
  102. 102.
    Wang L, Zhang J, Zhao R, Li Y, Li C, Zhang C (2010) Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.: kinetics, isotherms, pH, and ionic strength studies. Bioresour Technol 101(15):5808–5814Google Scholar
  103. 103.
    Wang XM, Huang JH, Huang KL (2010) Surface chemical modification on hyper-cross-linked resin by hydrophilic carbonyl and hydroxyl groups to be employed as a polymeric adsorbent for adsorption of p-aminobenzoic acid from aqueous solution. Chem Eng J 162(1):158–163Google Scholar
  104. 104.
    Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption on soils. Soil Sci Amer J 44:265Google Scholar
  105. 105.
    Sparks DL (1986) Kinetics of reaction in pure and mixed systems. In: Sparks DL (ed) Soil physical chemistry. CRC press, Boca RatonGoogle Scholar
  106. 106.
    Anirudhan TS, Radhakrishnan PG (2010) Uptake and desorption of nickel(II) using polymerised tamarind fruit shell with acidic functional groups in aqueous environments. Chem Ecol 26(2):93–109Google Scholar
  107. 107.
    Davila-Rangel JI, Solache-Rios M, Badillo-Almaraz VE (2005) Comparison of three Mexican aluminosilicates for the sorption of cadmium. J Radioanal Nuc Chem 267(1):139–145Google Scholar
  108. 108.
    Ngah WSW, Hanafiah M (2008) Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies. Biochem Eng J 39(3):521–530Google Scholar
  109. 109.
    Sivasankara V, Ramachandramoorthy T, Chandramohan A (2010) Fluoride removal from water using activated and MnO2-coated Tamarind Fruit (Tamarindus indica) shell: batch and column studies. J Hazard Mater 177(1–3):719–729Google Scholar
  110. 110.
    Ritchie AG (1977) Alternative to the Elovich equation for the kinetics of adsorption of gases on solids. J Chem Soc Faraday Trans 73:1650–1653Google Scholar
  111. 111.
    Helfferich F (1962) Ion exchange. McGraw-Hill, New YorkGoogle Scholar
  112. 112.
    Liberti L, Boari G, Passino R (1978) Chloride-sulfate exchange on anion resins – kinetic investigations.2. Particle diffusion rates. Desalination 25(2):123–134Google Scholar
  113. 113.
    Trgo M, Peric J, Medvidovic NV (2006) A comparative study of ion exchange kinetics in zinc/lead – modified zeolite-clinoptilolite systems. J Hazard Mater 136(3):938–945Google Scholar
  114. 114.
    Trgo M, Peric J, Medvidovic NV (2006) Investigations of different kinetic models for zinc ions uptake by a natural zeolitic tuff. J Environ Manage 79(3):298–304Google Scholar
  115. 115.
    Cincotti A, Mameli A, Locci AM, Orru R, Cao G (2006) Heavy metals uptake by Sardinian natural zeolites: experiment and modeling. Ind Eng Chem Res 45(3):1074–1084Google Scholar
  116. 116.
    Varshney KG, Gupta PA, Tayal N (2003) Kinetics of ion exchange of alkaline earth metal ions on, acrylamide cerium(IV) phosphate: a fibrous ion exchanger. Colloids Surf B Biointerfaces 28(1):11–16Google Scholar
  117. 117.
    Patzay G (1995) A simplified numerical solution method for the Nernst-Planck multicomponent ion exchange kinetics model. React Funct Polym 27(1):83–89Google Scholar
  118. 118.
    Smith TG, Dranoff JS (1964) Film diffusion-controlled kinetics in binary ion exchange. Ind Eng Chem Fundam 3(3):195–200Google Scholar
  119. 119.
    Chanda M, Rempel GL (1995) Sorption of sulfide on a macroporous, quaternized poly(4-vinyl pyridine) in alkaline medium. React Polym 24(3):203–212Google Scholar
  120. 120.
    Dolgonosov AM, Khamizov RK, Krachak AN, Prudkovsky AG (1995) Macroscopic model for multispecies ion-exchange kinetics. React Funct Polym 28(1):13–20Google Scholar
  121. 121.
    Rodriguez JF, Valverde JL, Rodrigues AE (1998) Measurements of effective self-diffusion coefficients in a gel-type cation exchanger by the zero-length-column method. Ind Eng Chem Res 37(5):2020–2028Google Scholar
  122. 122.
    Samson E, Marchand J (1999) Numerical solution of the extended Nernst-Planck model. J Colloid Interface Sci 215(1):1–8Google Scholar
  123. 123.
    Varshney KG, Pandith AH (1999) Forward and reverse ion-exchange kinetics for some alkali and alkaline earth metal ions on amorphous zirconium(IV) aluminophosphate. Langmuir 15(22):7422–7425Google Scholar
  124. 124.
    Rodriguez JF, de Lucas A, Leal JR, Valverde JL (2002) Determination of intraparticle diffusivities of Na+/K+ in water and water/alcohol mixed solvents on a strong acid cation exchanger. Ind Eng Chem Res 41(12):3019–3027Google Scholar
  125. 125.
    Valverde JL, De Lucas A, Carmona M, Gonzalez M, Rodriguez JF (2004) A generalized model for the measurement of effective diffusion coefficients of heterovalent ions in ion exchangers by the zero-length column method. Chem Eng Sci 59(1):71–79Google Scholar
  126. 126.
    Valverde JL, De Lucas A, Carmona M, Gonzalez M, Rodriguez JF (2005) Model for the determination of diffusion coefficients of heterovalent ions in macroporous ion exchange resins by the zero-length column method. Chem Eng Sci 60(21):5836–5844Google Scholar
  127. 127.
    Wesselingh JA, Vonk P, Kraaijeveld G (1995) Exploring the Maxwell-Stefan description of ion-exchange. Chem Eng J Biochem Eng J 57(2):75–89Google Scholar
  128. 128.
    Lagergren S (1898) About the theory of so-called adsorption of soluble substances Kungliga Svenska Vetenskapsakademiens. Handlingar 24:1–39Google Scholar
  129. 129.
    Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New YorkGoogle Scholar
  130. 130.
    Crank J (1999) The mathematics of diffusion, 2nd edn. Oxford University Press, Great BritainGoogle Scholar
  131. 131.
    Vermeulen T (1953) Theory for irreversible and constant-pattern solid diffusion. Ind Eng Chem 45(8):1664–1670Google Scholar
  132. 132.
    Inglezakis VJ, Grigoropoulou HP (2001) Applicability of simplified models for the estimation of ion exchange diffusion coefficients in zeolites. J Colloid Interface Sci 234(2):434–441Google Scholar
  133. 133.
    Aharoni C, Sparks DL (1991) Kinetics of soil chemical-reactions – a theoretical treatment. Rates Soil Chem Process 27:1–18Google Scholar
  134. 134.
    Aharoni C, Sparks DL, Levinson S, Ravina I (1991) Kinetics of soil chemical-reactions – relationships between empirical equations and diffusion-models. Soil Sci Soc Am J 55(5):1307–1312Google Scholar
  135. 135.
    Slater MJ (1991) Principles of ion exchange technology. Butterworth-Heinemann, Great BritainGoogle Scholar
  136. 136.
    Patzay G (1995) A simplified numerical solution method for the Nernst-Planck multicomponent ion exchange kinetics model. React Funct Polym 27:83–89Google Scholar
  137. 137.
    Krishna R, Wesselingh JA (1997) Review article number 50 – the Maxwell-Stefan approach to mass transfer. Chem Eng Sci 52(6):861–911Google Scholar
  138. 138.
    Krishna R (1990) Multicomponent surface-diffusion of adsorbed species – a description based on the generalized Maxwell-Stefan equations. Chem Eng Sci 45(7):1779–1791Google Scholar
  139. 139.
    Krishna R (1993) Problems and pitfalls in the use of the Fick formulation for intraparticle diffusion. Chem Eng Sci 48(5):845–861Google Scholar
  140. 140.
    Kapteijn F, Moulijn JA, Krishna R (2000) The generalized Maxwell-Stefan model for diffusion in zeolites: sorbate molecules with different saturation loadings. Chem Eng Sci 55(15):2923–2930Google Scholar
  141. 141.
    van de Graaf JM, Kapteijn MF, Moulijn JA (1999) Modeling permeation of binary mixtures through zeolite membranes. Aiche J 45(3):497–511Google Scholar
  142. 142.
    van der Stegen JHG et al (1999) Application of the Maxwell-Stefan theory to the transport in ion-selective membranes used in the chloralkali electrolysis process. Chem Eng Sci 54(13–14):2501–2511Google Scholar
  143. 143.
    Hogendoorn JA, Veen AJVd, Stegen JHGVd, Kuipers JAM, Versteeg GF (2001) Application of the Maxwell-Stefan theory to the membrane electrolysis process: model development and simulation. Comput Chem Eng 25:1251–1265Google Scholar
  144. 144.
    Wesselingh JA, Vonk P, Kraaijeveld G (1995) Exploring the Maxwell-Stefan description of ion-exchange. Chem Eng J Biochem Eng J 57(2):75–89Google Scholar
  145. 145.
    Graham EE, Dranoff JS (1982) Application of the Stefan-Maxwell equations to diffusion in ion-exchangers.1. Theory. Ind Eng Chem Fundam 21(4):360–365Google Scholar
  146. 146.
    Graham EE, Dranoff JS (1982) Application of the Stefan-Maxwell equations to diffusion in ion-exchangers.2. Experimental results. Ind Eng Chem Fundam 21(4):365–369Google Scholar
  147. 147.
    Pinto NG, Graham EE (1987) Characterization of ionic diffusivities in ion-exchange resins. Ind Eng Chem Res 26(11):2331–2336Google Scholar
  148. 148.
    Jackson R (1977) Transport in porous catalysts. Elsevier, AmsterdamGoogle Scholar
  149. 149.
    Mason EA, Malinauskas AP (1983) Gas transport in porous media: the dusty gas model. Elsevier, Amsterdam/The NetherlandsGoogle Scholar
  150. 150.
    Treybal RE (1981) Mass-transfer operations, 3rd edn. McGraw-Hill, SingaporeGoogle Scholar
  151. 151.
    Misic DM, Sudo Y, Suzuki M, Kawazoe K (1982) Liquid-to-particle mass-transfer in a stirred batch adsorption tank with non-linear isotherm. J Chem Eng Jpn 15(1):67–70Google Scholar
  152. 152.
    Kulov NN, Nikolaishvili EK, Barabash VM, Braginski LN, Malyusov VA, Zhavoronkov NM (1983) Dissolution of solid particles suspended in agitated vessels. Chem Eng Commun 21(4–6):259–271Google Scholar
  153. 153.
    Miller SA, Amber CM, Bennet RC, Dahlstrom DA, Darji JD, Emmet RC, Gray JB, Gurnham CF, Jacobs LJ, Klepper RP, Michalson AW, Oldshue JY, Silverblatt CE, Smith JC, Todd DB Liquid-solid systems, In: Perry RH, Green D (eds) Perry’s chemical engineers’ handbook. McGrow-Hill, SingaporeGoogle Scholar
  154. 154.
    Townsend R, Harjula R (2002) Ion exchange in molecular sieves by conventional techniques, in post-synthesis modification I. Springer, Berlin/Heidelberg, pp 1–42Google Scholar
  155. 155.
    Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66:1664–1666Google Scholar
  156. 156.
    Bohart GS, Adams EQ (1920) Some aspects of the behavior of charcoal with respect to chlorine. J Am Chem Soc 42:523–544Google Scholar
  157. 157.
    Clark RM (1987) Evaluating the cost and performance of field-scale antigranulocytes activated carbon systems. Environ Sci Technol 21(6):573–580Google Scholar
  158. 158.
    Yoon YH, Nelson JH (1984) Application of gas-adsorption kinetics.1. A theoretical-model for respirator cartridge service life. Am Ind Hyg Assoc J 45(8):509–516Google Scholar
  159. 159.
    Wolborska A (1989) Adsorption on activated carbon of p-nitrophenol from aqueous solution. Water Res 23(1):85–91Google Scholar
  160. 160.
    Baral SS, Das N, Ramulu TS, Sahoo SK, Das SN, Chaudhury GR (2009) Removal of Cr(VI) by thermally activated weed Salvinia cucullata in a fixed-bed column. J Hazard Mater 161(2–3):1427–1435Google Scholar
  161. 161.
    Han R, Wang Y, Zhao X, Wang Y, Xie F, Cheng J, Tang M (2009) Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves. Desalination 245(1–3):284–297Google Scholar
  162. 162.
    Pitzer KS (1991) Ion interaction approach: theory and data correlation. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions. CRC Press, Boca Raton, pp 75–153Google Scholar
  163. 163.
    Aniceto JPS, Cardoso SP, Faria TL, Lito PF, Silva CM (2012) Modeling ion exchange equilibrium: analysis of exchanger phase non-ideality. Desalination 290:43–53Google Scholar
  164. 164.
    Aniceto JPS, Lito PF, Silva CM (2012b) Modeling sorbent phase non-ideality for accurate prediction of multicomponent ion exchange equilibrium with homogeneous mass action law. J Chem Eng Data doi: 10.1021/je300156H

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Patrícia F. Lito
    • 1
  • Simão P. Cardoso
    • 1
  • José M. Loureiro
    • 2
  • Carlos M. Silva
    • 1
    Email author
  1. 1.CICECO/Department of ChemistryUniversity of AveiroAveiroPortugal
  2. 2.LSRE/Department of Chemical Engineering, School of EngineeringUniversity of OportoPortoPortugal

Personalised recommendations