Ion Exchange Technology I pp 491-507 | Cite as
Network Simulation of the Electrical Response of Ion Exchange Membrane Systems
Abstract
The steady-state, transient and small-signal ac responses of ion exchange membrane systems are studied by using the network simulation method. A network model for the Nernst-Planck and Poisson equations is used to describe the ionic transport processes through a cation-exchange membrane and the two diffusion boundary layers on both sides of the membrane. With this model and the electric circuit simulation programme PSpice, the steady-state, chronoamperometric, chronopotentiometric and small-signal ac responses are simulated. In this work, we analyse the influence of the fixed-charge concentration inside the membrane on (1) the steady-state current-voltage characteristic, (2) the ionic fluxes ratio describing the permselectivity of the membrane, (3) the chronoamperometric response, (4) the chronopotentiometric response and (5) the electrochemical impedance. Some of the results obtained for highly charged membranes can be compared with the analytical solutions in ideal membranes.
Keywords
Membrane System Diffusion Boundary Layer Applied Electric Potential Negative Fixed Charge Chronoamperometric ResponseNotes
Acknowledgement
I am indebted to Professor J. Horno for many helpful suggestions.
References
- 1.Xu T (2005) J Membr Sci 263:1CrossRefGoogle Scholar
- 2.Szymczyk A (ed) (2008) Surface electrical phenomena in membranes and microchannels. Transworld Research Network, TrivandrumGoogle Scholar
- 3.Helfferich F (1962) Ion exchange. McGraw-Hill, New YorkGoogle Scholar
- 4.Lakshminarayanaiah N (1969) Transport phenomena in membranes. Academic, New YorkGoogle Scholar
- 5.Rubinstein I (1990) Electro-diffusion of ions. SIAM Studies in Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
- 6.Bassignana IC, Reiss H (1983) J Phys Chem 87:136CrossRefGoogle Scholar
- 7.Selvey C, Reiss H (1987) J Membr Sci 30:75CrossRefGoogle Scholar
- 8.Manzanares JA, Murphy WD, Mafé S, Reiss H (1993) J Phys Chem 97:8524CrossRefGoogle Scholar
- 9.Sokalski T, Lingenfelter P, Lewenstam A (2003) J Phys Chem B 107:2443CrossRefGoogle Scholar
- 10.Volgin VM, Davydov AD (2005) J Membr Sci 259:110CrossRefGoogle Scholar
- 11.Morf WE, Pretsch E, De Rooij NF (2007) J Electroanal Chem 602:43CrossRefGoogle Scholar
- 12.Moya AA, Horno J (1999) J Phys Chem B 103:10791CrossRefGoogle Scholar
- 13.Moleón JA, Moya AA (2008) J Electroanal Chem 613:23CrossRefGoogle Scholar
- 14.Moleón JA, Moya AA (2009) J Electroanal Chem 633:306CrossRefGoogle Scholar
- 15.Moya AA, Moleón JA (2010) J Electroanal Chem 647:53CrossRefGoogle Scholar
- 16.Moya AA (2010) Electrochim Acta 55:2087CrossRefGoogle Scholar
- 17.Buck RP (1984) J Membr Sci 17:1CrossRefGoogle Scholar
- 18.Murphy WD, Manzanares JA, Mafé S, Reiss H (1992) J Phys Chem 96:9983CrossRefGoogle Scholar
- 19.Tuinenga PW (1992) SPICE: a guide to circuit simulation and analysis using PSpice. Prentice-Hall, Englewood CliffsGoogle Scholar
- 20.Rubinstein I, Shtilman L (1981) J Chem Soc Faraday Trans II 77:1595CrossRefGoogle Scholar
- 21.Nikonenko VV, Zabolotskii VI, Gnusin NP (1989) Sov Electrochem 25:262Google Scholar
- 22.Listovnichii AV (1989) Sov Electrochem 25:1479Google Scholar
- 23.Sistat P, Pourcelly G (1999) J Electroanal Chem 460:53CrossRefGoogle Scholar
- 24.Sokirko AV, Manzanares JA, Pellicer J (1994) J Colloid Interface Sci 168:32CrossRefGoogle Scholar
- 25.Karlin YuV, Kropotov VN (1995) Russ J Electrochem 31:472Google Scholar
- 26.Sistat P, Pourcelly G (1997) J Membr Sci 123:121CrossRefGoogle Scholar
- 27.Krol JJ, Wessling M, Strathmann H (1999) J Membr Sci 162:145CrossRefGoogle Scholar
- 28.Ibanez R, Stamatialis DF, Wessling M (2004) J Membr Sci 239:119CrossRefGoogle Scholar
- 29.Volodina E, Pismenkaya N, Nikonenko V, Larchet C, Pourcelly G (2005) J Colloid Interface Sci 285:247CrossRefGoogle Scholar
- 30.Lee XT (2008) J Colloid Interface Sci 325:215CrossRefGoogle Scholar
- 31.Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment and applications. Wiley, New YorkCrossRefGoogle Scholar
- 32.Urtenov MA-Kh, Kirillova EV, Seidova NM, Nikonenko VV (2007) J Phys Chem B 11:14208CrossRefGoogle Scholar
- 33.Park J-S, Choi J-H, Yeon S-H, Moon S-H (2006) J Colloid Interface Sci 294:129CrossRefGoogle Scholar
- 34.Park J-S, Choi J-H, Woo J-J, Moon S-H (2006) J Colloid Interface Sci 300:655CrossRefGoogle Scholar
- 35.Sistat P, Kozmai A, Pismenskaya N, Larchet C, Pourcelly G, Nikonenko V (2008) Electrochim Acta 53:6380CrossRefGoogle Scholar
- 36.Franceschetti DR, Macdonald JR, Buck RP (1991) J Electrochem Soc 138:1368CrossRefGoogle Scholar
- 37.Freger V (2005) Electrochem Commun 7:957CrossRefGoogle Scholar
- 38.Diard J-P, Glandut N, Montella C, Sánchez J-Y (2005) J Electroanal Chem 578:247CrossRefGoogle Scholar