Plasmonic spectroscopy of 2D densely packed and layered metallic nanostructures

Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

This chapter is an overview of size and concentration effects on electrodynamic coupling in two-dimensional densely packed arrays of metallic nanospheres in the frequency range of the surface plasmon resonance (SPR). Our theoretical analysis is based on the statistical theory of multiple scattering of waves. We show that concentration effects, such as the enhanced long-wavelength transmission of light and the strong resonance quenching of transmission, are effectively interpreted in terms of constructive and destructive interference of waves incident on and scattered by a monolayer of closely-packed submicrometer plasmonic particles. The concentration SPR red shift observed in the case of dipole metal nanoparticles is highly sensitive to the matrix refractive index and results from lateral near-field couplings. We also demonstrate phenomena caused by a strong plasmonic–photonic confinement in multilayered metal–dielectric nanostructures consisting of densely packed monolayers. For example, we show that employing the size and/or concentration gradient of dipole metallic nanoparticles in a quarter-wavelength multilayered system allows one to achieve an almost total absorbance.

Keywords

metallic nanostructures surface plasmon resonance electrodynamic coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bogomolov, V. N., S. V. Gaponenko, I. N. Germanenko, et al., 1997: Photonic band gap phenomenon and optical properties of artificial opals. Phys. Rev. E 55, 7619–7625.CrossRefGoogle Scholar
  2. 2.
    Dunich, R. A., and A. N. Ponyavina, 2008: Effect of metallic nanoparticle sizes on the local field near their surface. J. Appl. Spectrosc. 75, 832–838.CrossRefGoogle Scholar
  3. 3.
    Dyachenko, P. N., and Yu. V. Miklyaev, 2007: One-dimensional photonic crystal based on a nanocomposite “metal nanoparticles – dielectric”. Kompyuternaya Optika 31, 31–34 (in Russian).Google Scholar
  4. 4.
    Ebbesen, T. W., H. J. Lezec, H. F. Graemi, et al., 1998: Extraordinary optical transmission through sub-wavelength hole array. Nature 391, 667–669.CrossRefGoogle Scholar
  5. 5.
    Fan, Sh., P. R. Villeneuve, and J. D. Joannopoulos, 1996: Large omnidirectional band gaps in metallodielectric photonic crystals. Phys.Rev. B 54, 11245–11251.CrossRefGoogle Scholar
  6. 6.
    Gaponenko, S., 2010: Introduction to Nanophotonics (Cambridge University Press, Cambridge, UK).Google Scholar
  7. 7.
    Gehr, R. J., and R. W. Boyd, 1996: Optical properties of nanostructured optical materials. Chem. Matter 8, 1807–1819.CrossRefGoogle Scholar
  8. 8.
    Hong, K. M., 1980: Multiple scattering of electromagnetic waves by a crowded monolayer of spheres: application to migration imaging films. J. Opt. Soc. Am. 70, 821–826.CrossRefGoogle Scholar
  9. 9.
    Ishimaru, A., 1978: Propagation and Scattering of Waves in Randomly Inhomogeneous Media (Academic Press, New York).Google Scholar
  10. 10.
    Ivanov, A. P., V. A. Loiko, and V. P. Dik, 1988: Light Propagation in Close-packed Disperse Media (Nauka i Tekhnika, Minsk, in Russian).Google Scholar
  11. 11.
    Kachan, S. M., and A. N. Ponyavina, 2001: Resonance absorption spectra of composites containing metal coated nanoparticles. J. Mol. Struct. 267, 563–564.Google Scholar
  12. 12.
    Kachan, S. M., and A. N. Ponyavina, 2002: Spectral characteristics of confined photonic and plasmonic nanostructures. Proc. SPIE 4705, 88–94.CrossRefGoogle Scholar
  13. 13.
    Kachan, S. M., and A. N. Ponyavina, 2002: Spectral properties of close-packed monolayers consisted of metal nanospheres. J. Phys. Condens. Matter 14, 103–111.CrossRefGoogle Scholar
  14. 14.
    Kachan, S. M., and A. N. Ponyavina, 2002: The spatial ordering effect on spectral properties of close-packed metallic nanoparticle monolayers. Surf. Sci. 507–510, 603–608.CrossRefGoogle Scholar
  15. 15.
    Kachan, S. M., and A. N. Ponyavina, 2007: Enhanced optical sensitivity of closepacked arrays of noble-metal nanoparticles at environmental changes. CD International conference on Coherent and Nonlinear Optics (ICONO/LAT–2007) (Minsk, Belarus), I02/V–6.Google Scholar
  16. 16.
    Kachan, S. M., and A. N. Ponyavina, 2007: Optical diagnostics of 2D self-assembled silver nanoparticles arrays. In V. E. Borisenko, S. V. Gaponenko, and V. S. Gurin, Eds., Physics, Chemistry and Application of Nanostructures (World Scientific, Singapore), pp. 165–168.Google Scholar
  17. 17.
    Kachan, S. M., and A. N. Ponyavina, 2007: Total light absorption in ultrathin sizegradient metal-dielectric nanostructures. Proc. SPIE 6728, 672838.CrossRefGoogle Scholar
  18. 18.
    Kachan, S., O. Stenzel, and A. Ponyavina, 2006: High-absorbing gradient multilayer coatings with silver nanoparticles. Appl. Phys. B 84, 281–287.CrossRefGoogle Scholar
  19. 19.
    Khlebtsov, B. N., V. A. Khanadeyev, J. Ye, et al., 2008: Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells. Phys. Rev. B 77, 035440.CrossRefGoogle Scholar
  20. 20.
    Kim, B., S. L. Tripp, and A. Wei, 2001: Self-organization of large gold nanoparticle arrays. J. Am. Chem. Soc. 123, 7955–7956.CrossRefGoogle Scholar
  21. 21.
    Kreibig, U., and M. Volmer, 1995: Optical Properties of Metal Clusters (Springer, Berlin).Google Scholar
  22. 22.
    Lax, M., 1952: The effective field in dense systems. Phys. Rev. 58, 621–629.CrossRefGoogle Scholar
  23. 23.
    Lerme, J., 2000: Introduction of quantum finite-size effects in the Mie’s theory for a multilayered metal sphere in the dipolar approximation: application to free and matrixembedded noble metal clusters. Eur. Phys. J. D 10, 265–277.CrossRefGoogle Scholar
  24. 24.
    Li, J., G. Sun, and C. T. Chan, 2006: Optical properties of photonic crystals composed of metal-coated spheres. Phys. Rev. B 73, 075117.CrossRefGoogle Scholar
  25. 25.
    Liao, H., W. Lu, S. Yu, et al., 2005: Optical characteristics of gold nanoparticle-doped multilayer thin film. J. Opt. Soc. Am. B 22, 1923–1926.CrossRefGoogle Scholar
  26. 26.
    Mackowski, D. W., and M. I. Mishchenko, 1996: Calculation of the T matrix and the scattering matrix for the ensembles of spheres. J. Opt. Soc. Am. A 13, 2266–2278.CrossRefGoogle Scholar
  27. 27.
    Malynych, S., and G. Chumanov, 2003: Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J. Am. Chem. Soc. 125, 2896–2898.CrossRefGoogle Scholar
  28. 28.
    Messinger, B. J., K. U. von Raben, R. K. Chang, and P. W. Barber, 1981: Local fields at the surface of noble-metal microspheres. Phys. Rev. B 24, 649–657.CrossRefGoogle Scholar
  29. 29.
    Nalwa, H. S., Ed., 2001: Nanostructured Materials and Nanotechnology (Academic Press, New York).Google Scholar
  30. 30.
    Oraevsky, A. N., and I. E. Protsenko, 2001: Optical properties of heterogeneous media. Quantum Electron. 31, 252–256.CrossRefGoogle Scholar
  31. 31.
    Pendry, J. B., 1994: Photonic Band Structures. J. Mod. Opt. 41, 209–229.CrossRefGoogle Scholar
  32. 32.
    Penttila, A., E. Zubko, K. Lumme, et al., 2007: Comparison between discrete dipole implementations and exact techniques. J. Quant. Spectrosc. Radiat. Transfer. 106, 417–436.CrossRefGoogle Scholar
  33. 33.
    Pileni, M. P., 2001: Self-assemblies of nanocrystals: fabrication and collective properties. Appl. Surf. Sci. 171, 1–14.CrossRefGoogle Scholar
  34. 34.
    Ponyavina, A. N., and N. I. Sil’vanovich, 1994: Interference effects and spectral characteristics of multilayer scattering media. Opt. Spektrosk. 76, 648–655 (in Russian).Google Scholar
  35. 35.
    Ponyavina, A. N., S. M. Kachan, and N. I. Silvanovich, 2004: Statistical theory of multiple scattering of waves applied to 3D photonic crystals. J. Opt. Soc. Am. B 21, 1866–1875.CrossRefGoogle Scholar
  36. 36.
    Shalaev, V. M., and S. Kawata, Eds., 2007: Nanophotonics with Surface Plasmons (Elsevier, Amsterdam).Google Scholar
  37. 37.
    Shipway, A. N., E. Katz, and I. Willner, 2000: Nanoparticle arrays on surfaces for electronic, optical and sensoric applications. Chem. Phys. Chem. 1, 18–52.Google Scholar
  38. 38.
    Stefanou, N., G. Gantzounis, and C. Tserkezis, 2009: Multiple-scattering calculations for plasmonic nanostructures. Int. J. Nanotechnol. 6, 137–163.CrossRefGoogle Scholar
  39. 39.
    Wang, Z., C. T. Chan, W. Zhang, et al., 2001: Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency. Phys. Rev. B 64, 113108.CrossRefGoogle Scholar
  40. 40.
    Zamkovets, A. D., S. M. Kachan, A. N. Ponyavina, and N. I. Silvanovich, 2003: Optical spectra of metal-dielectric nanocomposites with a layered subwave structure. J. Appl. Spectrosc. 70, 593–598.CrossRefGoogle Scholar
  41. 41.
    Zamkovets, A. D., S. M. Kachan, and A. N. Ponyavina, 2008: Concentration-related enhancement of the sensitivity of surface plasmon resonance of metallic nanoparticles to the characteristics of a dielectric environment. J. Appl. Spectrosc. 75, 588–592.CrossRefGoogle Scholar
  42. 42.
    Ziman, J., 1979: Models of Disorder (Cambridge University Press, Cambridge, UK).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Belarusian National Technical UniversityMinskBelarus

Personalised recommendations