Advertisement

Assessing the Carbon Sequestration in Short Rotation Coppices of Robinia pseudoacacia L. on Marginal Sites in Northeast Germany

  • Ansgar Quinkenstein
  • Christian Böhm
  • Eduardo da Silva Matos
  • Dirk Freese
  • Reinhard F. Hüttl
Chapter
Part of the Advances in Agroforestry book series (ADAG, volume 8)

Abstract

The assessment of the carbon (C) sequestration potential of different land use systems is receiving increasing attention within the European Union forced by aspects of optimum humus content of soils and the debate on climate change. Short rotation coppice crops (SRC) emerge as a promising land use option both for bioenergy production and C sequestration. In this study, C storage in the biomass and the soil under four SRC systems of Robinia pseudoacacia L. was investigated. The plantations were established on reclamation sites in the mining district of Lower Lusatia in 1995, 2005, 2006, and 2007. Samples were collected in the winter of 2007 and 2009. Average aboveground dry matter (DM) production ranged from 0.04 to 9.5 Mg ha−1 year−1 for 1–14 years of growth, respectively. Total stocks of soil organic carbon (SOC) at 0–60 cm depth after 2 and 14 years of growth were 22.2  ±  11.3 and 106.0  ±  11.7 Mg ha−1, respectively. Interpreting the data as a false chronosequence, the average rate of soil C sequestration in the 0–60 cm layer was 7.0 Mg ha−1 year−1. Hot water extractable carbon (HWC) that represents the labile fraction of SOC was highest in the oldest plantation (1.4 Mg ha−1 for the 0–30 cm layer). The relative proportion of HWC in SOC, however, did not change substantially between diffe­rent aged SRC, indicating that with time, because of increasing stocks, C became increa­singly stabilized within the soils. Overall, plantations of R. pseudoacacia seem to be a promising land use option for post-mining areas due to their high capacity for sequestering C within biomass as well as a high potential to increase soil C stocks on marginal sites.

Keywords

Bioenergy False chronosequence Hot water extractable carbon Post-mining area Soil carbon stock 

Notes

Acknowledgements

This study was part of the ANFOREK project supported by the Vattenfall Europe Mining AG and of the AgroForstEnergie project supported by the German Federal Ministry of Food, Agriculture, and Consumer Protection (project no 22009707).

References

  1. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Europ J Soil Sci 47:151–163CrossRefGoogle Scholar
  2. Blume H-P, Brümmer GW, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke B-M (2010) Scheffer-Schachtschabel: Lehrbuch der Bodenkunde. Spektrum Akademischer Verlag, Heidelberg, 569 ppCrossRefGoogle Scholar
  3. Böhm C, Landgraf D, Makeschin F (2009a) Changes in total and labile carbon and nitrogen contents in a sandy soil after the conversion of a succession fallow to cultivated land. J Plant Nutr Soil Sci 173:46–54CrossRefGoogle Scholar
  4. Böhm C, Quinkenstein A, Freese D, Hüttl RF (2009b) Wachstumsverlauf von vierjährigen Robinien. AFZ-DerWald 10:532–533Google Scholar
  5. Boring LR, Swank WT (1984) The role of black locust (Robinia pseudoacacia) in forest succession. J Ecol 72:749–766CrossRefGoogle Scholar
  6. Bross EL, Gold MA, Nguyen PV (1995) Quality and decomposition of black locust (Robinia pseudoacacia) and alfalfa (Medicago sativa) mulch for temperate alley cropping systems. Agroforest Syst 29:255–264CrossRefGoogle Scholar
  7. Bungart R, Hüttl RF (2004) Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey-sandy mining substrate with respect to plant nutrition and water budget. Europ J For Res 123:105–115Google Scholar
  8. Chodak M, Khanna P, Beese F (2003) Hot water extractable C and N in relation to microbiological properties of soils under beech forests. Biol Fertil Soils 39:123–130CrossRefGoogle Scholar
  9. DIN (1998) Bodenbeschaffenheit: Bestimmung der Trockenrohdichte (ISO 11272:1998). Deutsches Institut für Normung e.V., 10 ppGoogle Scholar
  10. DIN (2007) Bodenbeschaffenheit: Bestimmung des Carbonatgehaltes-Volumetrisches Verfahren (DIN-ISO 10693). Deutsches Institut für Normung e.V., 6 ppGoogle Scholar
  11. Fettweis U, Bens O, Hüttl RF (2005) Accumulation and properties of soil organic carbon at reclaimed sites in the Lusatian lignite mining district afforested with Pinus sp. Geoderma 129:81–91CrossRefGoogle Scholar
  12. Ghani A, Dexter M, Perrott KW (2003) Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35:1231–1243CrossRefGoogle Scholar
  13. Grünewald H, Brandt BKV, Schneider BU, Bens O, Kendzia G, Hüttl RF (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29:319–328CrossRefGoogle Scholar
  14. Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, von Wühlisch G (2009) Robinia pseudoacacia L.: a lesser known tree species for biomass production. Bioenerg Res 2:123–133CrossRefGoogle Scholar
  15. Ihaka R, Gentleman R (1996) R: a Language for data analysis and graphics. J Comput Graph Stat 5:299–314CrossRefGoogle Scholar
  16. IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. In: Pachauri RK, Reisinger A (eds) IPCC. Cambridge University Press, Geneva, 104 ppGoogle Scholar
  17. Katzur J, Haubold-Rosar M (1996) Amelioration and reforestation of sulfurous mine soils in Lusatia (Eastern Germany). Water Air Soil Pollut 91(1):17–32CrossRefGoogle Scholar
  18. Körschens M, Schulz E (1999) Die organische Bodensubstanz Dynamik - Reproduktion – ökonomisch und ökologisch begründete Richtwerte. Zentrum für Umweltforschung (UFZ), UFZ-Berichte 13, 46 ppGoogle Scholar
  19. Körschens M, Schulz E, Behm R (1990) Hot water extractable carbon and nitrogen of soils as a criterion for their ability of N-release. Zentralbl Mikrobiol 145:305–311Google Scholar
  20. Landgraf D, Leinweber P, Makeschin F (2006) Cold and hot water extractable organic matter as indicators of litter decomposition in forest soils. J Plant Nutr Soil Sci 169:76–82CrossRefGoogle Scholar
  21. Leinweber P, Schulten H-R, Körschens M (1995) Hot water extracted organic matter: chemical composition and temporal variations in a long-term field experiment. Biol Fertil Soils 20:17–23CrossRefGoogle Scholar
  22. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60CrossRefGoogle Scholar
  23. Merbach W, Wittenmayer L (2004) Influence of plant rhizodeposition on C fluxes in soil. Arch Agron Soil Sci 50:99–113CrossRefGoogle Scholar
  24. Mitchell CP, Stevens EA, Watters MP (1999) Short-rotation forestry - operations, productivity and costs based on experience gained in the UK. For Ecol Manag 121:123–136CrossRefGoogle Scholar
  25. Nii-Annang S, Grünewald H, Freese D, Hüttl R, Dilly O (2009) Microbial activity, organic C accumulation and 13C abundance in soils under alley cropping systems after 9 years of recultivation of quaternary deposits. Biol Fertil Soils 45:531–538CrossRefGoogle Scholar
  26. Quinkenstein A, Jochheim H, Schneider BU, Hüttl RF (2009) Modellierung des Kohlenstoff­haushalts von Pappel-Kurzumtriebsplantagen in Brandenburg. In: Reeg T, Bemmann A, Konold W, Murach D, Spiecker H (eds) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH, Weinheim, 379 ppGoogle Scholar
  27. Rédei K, Osváth-Bujtás Z, Veperdi I (2008) Black locust (Robinia pseudoacacia L.) improvement in Hungary: a review. Acta Silv et Lignaria Hung 4:127–132Google Scholar
  28. Rumpel C, Balesdent J, Grootes P, Weber E, Kögel-Knabner I (2003) Quantification of lignite- and vegetation-derived soil carbon using 14 C activity measurements in a forested chronosequence. Geoderma 112:155–166CrossRefGoogle Scholar
  29. Scholz V, Ellerbrock R (2002) The growth productivity, and environmental impact of the cultivation of energy crops on sandy soil in Germany. Biomass Bioenergy 23:81–92CrossRefGoogle Scholar
  30. Scholz V (2010) Umweltverträglichkeit von Pappeln und Weiden im Vergleich mit anderen Energiepflanzen. Proceedings of the Agrarholz 2010  –  Symposium held in Berlin, Germany, May 18–19. Agency for Renewable Resources (FNR), 15 ppGoogle Scholar
  31. Tiessen H, Cuevas E, Chacon P (2002) The role of soil organic matter in sustaining soil fertility. Nature 371:783–785CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ansgar Quinkenstein
    • 1
  • Christian Böhm
    • 1
  • Eduardo da Silva Matos
    • 1
  • Dirk Freese
    • 1
  • Reinhard F. Hüttl
    • 2
    • 3
  1. 1.Soil Protection and RecultivationBrandenburg University of TechnologyCottbusGermany
  2. 2.Chair of Soil Protection and RecultivationBrandenburg University of TechnologyCottbusGermany
  3. 3.Helmholtz Centre Potsdam – GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations