Why we may be unable to read the complete Book of Life

Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 20)

Abstract

The current incomplete understanding of the evolution of the cosmos sets a limit to astrobiology’s major aim of understanding the last two chapters of the Books of Life, namely the distribution and destiny of life in the universe. To illustrate this fundamental limitation we review briefly the present search for a complete theory of the basic forces of nature that could give us a deeper understanding of both cosmic evolution and the ultimate aims of astrobiology. This chapter should produce most rewarding reading. However, the reader should be prepared to do a reasonable amount of preparation by consulting the suggested items in the Illustrated glossary:

Keywords

Dark Matter Higgs Boson Dark Energy Large Hadron Collider Compact Muon Solenoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary Reading

  1. De Grasse Tyson, N. and Goldsmith, D. (2004) Origins Fourteen Billion Years of Cosmic Evolution. W.W. Norton & Company, New York.Google Scholar
  2. De Grasse Tyson, N. (2007) Death by a Black Hole and Other Cosmic Quandries, W.W. Norton & Company, New York.Google Scholar
  3. Gribbin, J. (2009) In search of the multiverse. London, Allen Lane, 228 pp.Google Scholar
  4. Quinn, H. R. and Nir, Y. (2008) The Mystery of the Missing Antimatter, Princeton University Press, Princeton, N. J.Google Scholar
  5. Yau, S.-T. and Nadis, S. (2010) The shape of inner space: string theory and the geometry of the universe’s hidden dimensions New York, NY: Basic Books.MATHGoogle Scholar

References

  1. Albrecht, A. and Steinhardt, P. J. (1982) Cosmology For Grand Unified Theories With Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 48, 1220.ADSCrossRefGoogle Scholar
  2. Caldwell, R.R. and Marc Kamionkowski, M. (2001) Echoes from the Big Bang, Scientific American January 2001, pp. 28-33.Google Scholar
  3. Chela-Flores (1967) A study of analytic properties of scattering amplitudes. M. Phil Thesis. University of London. 125pp.Google Scholar
  4. Chela-Flores, J. (1970) Mandelstam Representation in Potential Scattering. J. Math. Phys. 11, 2013-2015.MathSciNetADSCrossRefGoogle Scholar
  5. Chela-Flores, J. (2009) A Second Genesis: Stepping stones towards the intelligibility of nature Google Scholar
  6. World Scientific Publishers, Singapore, 248 pp.Google Scholar
  7. Feynman, R. P. (1965) Symmetries in elementary particle physics. A. Zichichi (ed.) New York, Academic Press.Google Scholar
  8. Goldberger, M. L. and Jones, C. E. (1966) Consistency Questions Raised by Simultaneous Mandelstam and Angular-Momentum analyticity. Phys. Rev. Lett. 17, 105–107.ADSCrossRefGoogle Scholar
  9. Guth, A. H. (1981) The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23, 347.ADSCrossRefGoogle Scholar
  10. Linde, A. (1982) A New Inflationary Universe Scenario: A Possible Solution Of The Horizon, Flatness, Homogeneity, Isotropy And Primordial Monopole Problems, Phys. Lett. B 108, 389.MathSciNetADSCrossRefGoogle Scholar
  11. Mandelstam, S (1958) Determination of the Pion-Nucleon Scattering Amplitude from Dispersion Relations and Unitarity. General Theory. Phys. Rev. 112, 1344–1360.MathSciNetGoogle Scholar
  12. Mandelstam, S (1963) Cuts in the Angular-Momentum Plane-I. Nuovo Cimento 30, 1127-1147.CrossRefGoogle Scholar
  13. Perlmutter, S., G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom, I. M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, N.J. Nunes, R. Pain, C.R. Pennypacker, R. Quimby, C. Lidman, R.S. Ellis, M. Irwin, R.G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B.J. Boyle, A.V. Filippenko, T. Matheson, A.S. Fruchter, N. Panagia, H.J.M. Newberg, W.J. Couch (1999) Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophysical J. 517, 565–86.ADSCrossRefGoogle Scholar
  14. Veneziano, G. (1968) Construction of Crossing Symmetric, Regge-Behaved Amplitude for Linearly Rising Trajectories. Nuovo Cimento 57A, 190-197.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations