Photosynthesis pp 625-650 | Cite as

The Uptake of CO2 by Cyanobacteria and Microalgae

Chapter
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 34)

Summary

Cyanobacteria and eukaryotic algae possess a CO2-concentrating mechanism (CCM), which involves the transport of inorganic carbon (Ci) driven by light energy and the fixation of CO2 in the subcellular compartments (carboxysomes in cyanobacteria and pyrenoids in green algae) where most of the ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) is confined. Physiological and molecular analysis identified five Ci uptake-systems in cyanobacteria. Two of them are CO2-uptake systems driven by the thylakoid membrane-located NAD(P)H dehydrogenase (NDH-1) complexes. Three bicarbonate transporters, BCT1 (an ABC-type transporter composed of Cmp proteins), SbtA and BicA, are localized on the cytoplasmic membranes. One of the main features of the CCMs is a marked rise in the ability to take up Ci observed when high-CO2-grown cells are transferred to CO2-limiting conditions in the light. Many low-CO2 (LC)-inducible genes including those involved in Ci uptake have been identified in cyanobacteria and green algae. Chlamydomonas reinhardtii is a model eukaryotic alga and has been used extensively for the study of the CCM. Candidate genes responsible for Ci uptake in C. reinhardtii, and that encode proteins homologous to transporters in other organisms, were found among LC-inducible genes identified by DNA microarray analysis. These genes include LciA and LciB, whose transcripts are not accumulated in the pmp1 mutant defective in Ci-transport upon exposure to LC. The CCM1 (CIA5) is essential for the control of CCM induction and the expression of CO2-responsive genes through putative LC signal transduction pathways. We present recent studies on the mechanisms of CO2-sensing and of induction of gene expression by LC. Other microalgae such as coccolithophorids, diatoms and dinoflagellates also possess CCMs. We summarize the present state of the art on the CCMs of these major aquatic primary producers and other CCM-related topics such as cycling of Ci, CO2-mediated interspecies communication, stable carbon isotope fractionation and biotechnological implications.

Abbreviations:

CA –

Carbonic anhydrase;

CCM –

CO2-Concentrating mechanism;

Ci –

Inorganic carbon;

HC –

High CO2;

HCR –

High-CO2-requring;

LC –

Low CO2;

NDH-1 –

NAD(P)H dehydrogenase;

PS –

Photosystem;

Rubisco –

Ribulose-1,5-bisphosphate carboxylase/oxygenase

References

  1. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou SG, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP and Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 306: 79–86PubMedCrossRefGoogle Scholar
  2. Badger MR and Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54: 609–622PubMedCrossRefGoogle Scholar
  3. Badger MR and Spalding MH (2000) CO2 acquisition, concentration and fixation in cyanobacteria and algae. In: Leegood RC, Sharkey TD and von Caemmerer S (eds) Photosynthesis: Physiology and Metabolism, Advances in Photosynthesis, Vol 9, pp 369–397. Kluwer Academic Publishers, DordrechtGoogle Scholar
  4. Badger MR, Kaplan A, and Berry JA (1980) Internal Inorganic Carbon Pool of Chlamydomonas reinhardtii: Evidence for a carbon dioxide-concentrating mechanism. Plant Physiol 66: 407–413PubMedCrossRefGoogle Scholar
  5. Badger MR, Palmqvist K and Yu JW (1994) Measurement of CO2 and HCO3 fluxes in cyanobacteria and microalgae during steady-state photosynthesis. Physiol Plant 90: 529–536CrossRefGoogle Scholar
  6. Badger MR, Price GD, Long BM and Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57: 249–265PubMedCrossRefGoogle Scholar
  7. Ball SG (1998) Regulation of starch biosynthesis. In: Rochaix JD, Goldschmidt-Clermont M and Merchant S (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, Advances in Photosynthesis, Vol 7, pp 549–567. Kluwer Academic Publishers, DordrechtGoogle Scholar
  8. Battchikova N and Aro EM (2007) Cyanobacterial NDH-1 complexes: multiplicity in function and subunit composition. Physiol Plant 131: 22–32PubMedCrossRefGoogle Scholar
  9. Battchikova N, Zhang PP, Rudd S, Ogawa T and Aro EM (2005) Identification of NdhL and Ssl1690 (NdhO) in NDH-1L, and NDH-1M complexes of Synechocystis sp. PCC 6803. J Biol Chem 280: 2587–2595PubMedCrossRefGoogle Scholar
  10. Beardall J and Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43: 26–40CrossRefGoogle Scholar
  11. Behrenfeld MJ, Bale AJ, Kolber ZS, Aiken J and Falkowski PG (1996) Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383: 508–511CrossRefGoogle Scholar
  12. Benthien A, Zondervan I, Engel A, Hefter J, Terbruggen A and Riebesell U (2007) Carbon isotopic fractionation during a mesocosm bloom experiment dominated by Emiliania huxleyi: Effects of CO2 concentration and primary production. Geochim Cosmochim Acta 71: 1528–1541CrossRefGoogle Scholar
  13. Berman-Frank I, Erez J and Kaplan A (1998) Changes in inorganic carbon uptake during the progression of dinoflagellate bloom in a lake ecosystem. Can J Bot 76: 1043–1051Google Scholar
  14. Berman-Frank I, Kaplan A, Zohary T and Dubinsky Z (1995) Carbonic anhydrase activity in the bloom-forming dinoflagellate Peridinium gatunense. J Phycol 31: 906–913CrossRefGoogle Scholar
  15. Bonfil DJ, Ronen-Tarazi M, Sültemeyer D, Lieman-Hurwitz J, Schatz D and Kaplan A (1998) A putative HCO3 transporter in the cyanobacterium Synechococcus sp. strain PCC 7942. FEBS Lett 430: 236–240PubMedCrossRefGoogle Scholar
  16. Bowes G, Rao SK, Estavillo GM and Reiskind JB (2004) C4 mechanism in aquatic angiosperms: Comparisons with terrestrial C4 systems. Funct Plant Biol 29: 379–392CrossRefGoogle Scholar
  17. Bowler C, Allen EA, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret J-P, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N. Kroth PG, La Roche J, Lindquist E, Lommer M, Marten-Jèzèquel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq M-P, Napoli C, Obornik M, Parker MS, Petit J-L, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y and Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456: 239–244Google Scholar
  18. Bryant DR (ed) (1994) The Molecular Biology of Cyanobacteria, Advances in Photosynthesis, Vol 1, Kluwer Academic Publishers, DordrechtGoogle Scholar
  19. Burkhardt S, Amoroso G, Riebesell U and Sültemeyer D (2001) CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol Oceanogr 46: 1378–1391CrossRefGoogle Scholar
  20. Burow MD, Chen ZY, Mouton TM and Moroney JV (1996) Isolation of cDNA clones of genes induced upon transfer of Chlamydomonas reinhardtii cells to low CO2. Plant Mol Biol 31: 443–448PubMedCrossRefGoogle Scholar
  21. Cassar N, Laws EA, Bidigare RR and Popp BN (2004) Bicarbonate uptake by Southern Ocean phytoplankton. Global Biogeochem Cycles 18 Article Number: GB2003Google Scholar
  22. Chen XW and Gao KS (2004) Photosynthetic utilisation of inorganic carbon and its regulation in the marine diatom Skeletonema costatum. Funct Plant Biol 31: 1027–1033CrossRefGoogle Scholar
  23. Chen ZY, Burow MD, Mason CB and Moroney JV (1996) A low-CO2-inducible gene Encoding an alanine:[alpha]-ketoglutarate aminotransferase in Chlamydomonas reinhardtii. Plant Physiol 112: 677–684PubMedCrossRefGoogle Scholar
  24. Chen ZY, Lavigne LL, Mason CB and Moroney JV (1997) Cloning and overexpression of two cDNAs encoding the low-CO2-inducible chloroplast envelope protein LIP-36 from Chlamydomonas reinhardtii. Plant Physiol 114: 265–273PubMedCrossRefGoogle Scholar
  25. Colman B, Huertas IE, Bhatti S and Dason JS (2002) The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Funct Plant Biol 29: 261–270CrossRefGoogle Scholar
  26. Coleman JR (1991) The molecular and biochemical analyses of CO2 concentrating mechanisms in cyanobacteria and microalgae. Plant Cell Environ 14: 861–867CrossRefGoogle Scholar
  27. Dason JS, Huertas IE and Colman B (2004) Source of inorganic carbon for photosynthesis in two marine dinoflagellates. J Phycol 40: 285–292CrossRefGoogle Scholar
  28. Duanmu D, Miller AR, Horken KM, Weeks DP and Spalding MH (2009a) Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3– transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 106: 5990–5995Google Scholar
  29. Duanmu D, Wang Y and Spalding MH (2009b) Thylakoid lumen carbonic anhydrase (CAH3) mutation suppresses air-dier phenotype of LCIB mutant in Chlamydomonas reinhardtii. Plant Physiol 149: 929–937Google Scholar
  30. Edwards GE, Franceschi VR and Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55: 173–196PubMedCrossRefGoogle Scholar
  31. Eisenhut M, Kahlon S, Hasse D, Ewald R, Lieman-Hurwitz J, Ogawa T, Ruth W, Bauwe H, Kaplan A, Hagemann M (2006) The plant-like C2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol 142: 333–342PubMedCrossRefGoogle Scholar
  32. Eisenhut M, Ruth W, Haimovich M, Bauwe H and Kaplan A (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiotically to plants. Proc Natl Acad Sci USA 105: 17199–17204Google Scholar
  33. Engel A, Schulz KG, Riebesell U, Bellerby R, Delille B and Schartau M (2008) Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II). Biogeosciences 5: 509–521CrossRefGoogle Scholar
  34. Engel A, Zondervan I, Aerts K, Beaufort L, Benthien A, Chou L, Delille B, Gattuso JP, Harlay J, Heemann C, Hoffmann L, Jacquet S, Nejstgaard J, Pizay MD, Rochelle-Newall E, Schneider U, Terbrueggen A and Rebesell U (2005) Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol Oceanogr 50: 493–507CrossRefGoogle Scholar
  35. Erez J, Bouevich A and Kaplan A (1998) Carbon isotope fractionation by the freshwater cyanobacterium Synechococcus PCC 7942. Can J Bot 76: 1109–1118Google Scholar
  36. Eriksson M, Karlsson J, Ramazanov Z, Gardestroem P and Samuelsson G (1996) Discovery of an algal mitochondrial carbonic anhydrase: molecular cloning and characterization of a low-CO2-induced polypeptide in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 93: 12031–12034PubMedCrossRefGoogle Scholar
  37. Espie GS and Colman B (1986) Inorganic carbon uptake during photosynthesis. I: a theoretical analysis using the isotopic disequilibrium technique. Plant Physiol 80: 863–869PubMedCrossRefGoogle Scholar
  38. Espie GS and Kandasamy RA (1994) Monensin inhibition of Na+-dependent HCO3 transport distinguishes it from Na+-independent HCO3 transport and provides evidence for Na+/HCO3 symport in the cyanobacterium Synechococcus UTEX 625. Plant Physiol 104: 1419–1428PubMedGoogle Scholar
  39. Espie GS, Miller AG and Canvin DT (1989) Selective and reversible inhibition of active CO2 transport by hydrogen sulfide in a cyanobacterium. Plant Physiol 91: 389–394CrossRefGoogle Scholar
  40. Falkowski PG (1994) The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res 39: 235–258CrossRefGoogle Scholar
  41. Falkowski PG and Raven J (1997) Aquatic Photosynthesis. Blackwell Scientific, OxfordGoogle Scholar
  42. Falkowski PG, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V and Steffen W (2000) The global carbon cycle: A test of our knowledge of earth as a system. Science 290: 291–296PubMedCrossRefGoogle Scholar
  43. Farquhar GD, Ehleringer JR and Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40: 503–537CrossRefGoogle Scholar
  44. Figge RM, Cassier-Chauvat C, Chauvat F and Cerff R (2001) Characterization and analysis of an NAD(P)H dehydrogenase transcriptional regulator critical for the survival of cyanobacteria facing inorganic carbon starvation and osmotic stress. Mol Microbiol 39: 455–468PubMedCrossRefGoogle Scholar
  45. Folea M, Zhang P, Nowaczyk MM, Ogawa T, Aro E-M and Boekema EJ (2008) Single particle analysis of thylakoid proteins from Thermosynechococcus elongatus and Synechocystis 6803: Localization of the CupA subunit of NDH-1. FEBS Lett 582: 249–254PubMedCrossRefGoogle Scholar
  46. Fukuzawa H, Fujiwara S, Yamamoto Y, Dionizio-Sese ML and Miyachi S (1990) cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration. Proc Natl Acad Sci USA 87: 4383–4387PubMedCrossRefGoogle Scholar
  47. Fukuzawa H, Miura K, Ishizaki K, Kucho K, Saito T, Kohinata T and Ohyama K (2001) Ccm1, a regulatory gene controlling the induction of a carbon concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proc Natl Acad Sci USA 98: 5347–5352PubMedCrossRefGoogle Scholar
  48. Fukuzawa H, Suzuki E, Komukai Y and Miyachi S (1992) A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC 7942. Proc Natl Acad Sci USA 89: 4437–4441PubMedCrossRefGoogle Scholar
  49. Furla P, Galgani I, Durand I and Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203: 3445–3457PubMedGoogle Scholar
  50. Gervais F and Riebesell U (2001) Effect of phosphorus limitation on elemental composition and stable carbon isotope fractionation in a marine diatom growing under different CO2 concentrations. Limnol Oceanogr 46: 497–504CrossRefGoogle Scholar
  51. Gervais F, Riebesell U and Gorbunov MY (2002) Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone. Limnol Oceanogr 47: 1324–1335CrossRefGoogle Scholar
  52. Giordano M, Beardall J and Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Ann Rev Plant Biol 56: 99–131CrossRefGoogle Scholar
  53. Giordano M, Norici A, Forssen M, Eriksson M and Raven JA (2003) An anaplerotic role for mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 132: 2126–2134PubMedCrossRefGoogle Scholar
  54. Goericke R and Fry B (1994) Variation of marine plankton delta 13C with latitude, temperature, and dissolved CO2 in the world ocean. Global Biochem Cycles 8: 85–90CrossRefGoogle Scholar
  55. Guy RD, Fogel ML and Berry JA (1993) Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol 101: 37–47PubMedGoogle Scholar
  56. Harada H, Nakatsuma D, Ishida M and Matsuda Y (2005) Regulation of the expression of intracellular β-carbonic anhydrase in response to CO2 and light in the marine diatom Phaeodactylum tricornutum. Plant Physiol 139: 1041–1050PubMedCrossRefGoogle Scholar
  57. Hassidim M, Keren N, Ohad I, Reinhold L and Kaplan A (1997) Acclimation of Synechococcus strain WH7803 to ambient CO2 concentration and to elevated light intensity. J Phycol 33: 811–817CrossRefGoogle Scholar
  58. Hatch MD (1992) C4 photosynthesis: An unlikely process full of surprises. Plant Cell Physiol 33: 333–342Google Scholar
  59. Herranen M, Battchikova N, Zhang PP, Graf A, Sirpio S, Paakkarinen V and Aro EM (2004) Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. Plant Physiol 134: 470–481PubMedCrossRefGoogle Scholar
  60. Huertas IE, Espie GS, Colman B and Lubian LM (2000) Light-dependent bicarbonate uptake and CO2 efflux in the marine microalga Nannochloropsis gaditana. Planta 211: 43–49PubMedCrossRefGoogle Scholar
  61. Iglesias-Rodriguez MD, Halloran PR, Rickaby RE, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DR, Tyrrell T, Gibbs SJ, von Dassow P, Rehm E, Armbrust EV and Boessenkool KP (2008) Phytoplankton calcification in a high-CO2 world. Science 320: 336–340PubMedCrossRefGoogle Scholar
  62. Im CS and Grossman AR (2002) Identification and regulation of high light-induced genes in Chlamydomonas reinhardtii. Plant J 30: 301–313Google Scholar
  63. Jenks A and Gibbs SP (2000) Immunolocalization and distribution of Form II Rubisco in the pyrenoid and chloroplast stroma of Amphidinium carterae and Form I Rubisco in the symbiont-derived plastids of Peridinium foliaceum (Dinophyceae). J Phycol 36: 127–138CrossRefGoogle Scholar
  64. Johnston AM (1991) The acquisition of inorganic carbon by marine macroalgae. Can J Bot 69: 1123–1132CrossRefGoogle Scholar
  65. Johnston AM, Maberly SC and Raven JA (1992) The acquisition of inorganic carbon by four red macroalgae from different habitats. Oecologia 91: 481–492CrossRefGoogle Scholar
  66. Jordan DB and Ogren WL (1981) Species variation in the specificity of ribulose-bisphosphate carboxylase-oxygenase. Nature 291: 513–515CrossRefGoogle Scholar
  67. Kaplan A and Reinhold L (1999) The CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50: 539–570PubMedCrossRefGoogle Scholar
  68. Kaplan A, Hagemann M, Bauwe H, Kahlon S and Ogawa T (2008) Carbon acquisition by cyanobacteria: Mechanisms, comparative genomics, and evolution. In: Herrero A and Flores E (eds) The Cyanobacteria: Molecular Biology, Genomics and Evolution, pp 305–334. Horizon Scientific Press, Norwich, UKGoogle Scholar
  69. Kaplan A, Marcus Y and Reinhold L (1988) Inorganic carbon uptake by cyanobacteria. In: Packer L and Glazer AN (eds) Methods in Enzymology, Vol 167, pp 534–539. Academic Press, New YorkGoogle Scholar
  70. Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Park YI, Husic HD, Moroney JV and Samuelsson G (1998) A novel alpha-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J 17: 1208–1216PubMedCrossRefGoogle Scholar
  71. Kim JM, Lee K, Shin K, Kang JH, Lee HW, Kim M, Jang PG and Jang MC (2006) The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnol Oceanogr 51: 1629–1636CrossRefGoogle Scholar
  72. Kohinata T, Nishino H and Fukuzawa H (2008) Significance of zinc in a regulatory protein, CCM1, which regulates the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol 49: 273–283PubMedCrossRefGoogle Scholar
  73. Koropatkin NM, Koppenaal DW, Pakrasi HB and Smith TJ (2007) The structure of a cyanobacterial bicarbonate transport protein, CmpA. J Biol Chem 282: 2606–2614CrossRefGoogle Scholar
  74. Koumandou VL, Nisbet RER, Barbrook AC and Howe CJ (2004) Dinoflagellate chloroplasts - where have all the genes gone? Trends Genet 20: 261–267PubMedCrossRefGoogle Scholar
  75. Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, Maheswari U, Armbrust EV and Bowler C (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3: e1426.PubMedCrossRefGoogle Scholar
  76. Kucho K, Ohyama K and Fukuzawa H (1999) CO2-responsive transcriptional regulation of CAH1 encoding carbonic anhydrase is mediated by enhancer and silencer regions in Chlamydomonas reinhardtii. Plant Physiol 121: 1329–1337PubMedCrossRefGoogle Scholar
  77. Kucho K, Yoshioka S, Taniguchi F, Ohyama K and Fukuzawa H (2003) Cis-acting elements and DNA-binding proteins involved in CO2-responsive transcriptional activation of Cah1 encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 133: 783–793PubMedCrossRefGoogle Scholar
  78. Lane TW and Morell FMM (2000) Regulation of carbonic anhydrase expression by zinc, cobalt and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant Physiol. 123: 345–352PubMedCrossRefGoogle Scholar
  79. Larsen JB, Larsen A, Thyrhaug R, Bratbak G, and Sandaa RA (2008) Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO2 levels. Biogeosciences 5: 523–533CrossRefGoogle Scholar
  80. Laws EA, Popp BN, Cassar N and Tanimoto J (2002) 13C discrimination patterns in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions. Funct Plant Biol 29: 323–333CrossRefGoogle Scholar
  81. Leggat W, Marendy EM, Baillie B, Whitney SM, Ludwig M, Badger MR and Yellowlees D (2002) Dinoflagellate symbioses: strategies and adaptations for the acquisition and fixation of inorganic carbon. Funct Plant Biol 29: 309–322CrossRefGoogle Scholar
  82. Li Q and Canvin DT (1998) Energy sources for HCO3 and CO2 transport in air-grown cells of Synechococcus UTEX 625. Plant Physiol 116: 1125–1132PubMedCrossRefGoogle Scholar
  83. Lieman-Hurwitz J, Haimovich M, Shalev-Maul G, Ishii A, Hihara Y, Gaathon A, Lebendiker M and Kaplan A (2009) A cyanobacterial Abr-B like protein affects the apparent photosynthetic affinity to CO2 by modulating low-CO2-gene expression. Environ Microbiol 11: 927–936Google Scholar
  84. Lieman-Hurwitz J, Rachmilevitch S, Mittler RYM and Kaplan A (2003) Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3 accumulation in cyanobacteria. Plant Biotech J 1: 43–50CrossRefGoogle Scholar
  85. Maberly SS (1990) Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J Phycol 26: 439–449CrossRefGoogle Scholar
  86. Mackenzie TD, Burns RA and Campbell DA (2004) Carbon status constrains light acclimation in the cyanobacterium Synechococcus elongatus. Plant Physiol 136: 3301–3312PubMedCrossRefGoogle Scholar
  87. McGinn PJ, Price GD, Maleszka R and Badger MR (2003) Inorganic carbon limitation and light control the expression of transcripts related to the CO2-concentrating mechanism in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 132: 218–229PubMedCrossRefGoogle Scholar
  88. Maeda S, Badger MR and Price GD (2002) Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium Synechococcus sp. PCC 7942. Mol Microbiol 43: 425–436PubMedCrossRefGoogle Scholar
  89. Maeda S, Price GD, Badger MR, Enomoto C and Omata T (2000) Bicarbonate binding activity of the CmpA protein of the cyanobacterium Synechococcus sp. strain PCC 7942 involved in active transport of bicarbonate. J Biol Chem 275: 20551–20555PubMedCrossRefGoogle Scholar
  90. Mamedov TG, Suzuki K, Miura K, Kucho K and Fukuzawa H (2001) Characteristics and sequence of phosphoglycerate phosphatase from an eukaryotic green algae Chlamydomonas reinhardtii. J Biol Chem 276: 45573–45579PubMedCrossRefGoogle Scholar
  91. Marco E, Ohad N, Schwarz R, Lieman-Hurwitz J, Gabay C and Kaplan A (1993) High CO2 concentration alleviates the block in photosynthetic electron transport in an ndhB-inactivated mutant of Synechococcus sp. PCC 7942. Plant Physiol 101: 1047–1053PubMedCrossRefGoogle Scholar
  92. Marcus Y, Schwarz R, Friedberg D and Kaplan A (1986) High CO2 requiring mutant of Anacystis nidulans R2. Plant Physiol 82: 610–612PubMedCrossRefGoogle Scholar
  93. Mariscal V, Moulin P, Orsel M, Miller AJ, Fernández E and Galván A (2006) Differential regulation of the Chlamydomonas Nar1 gene family by carbon and nitrogen. Protist 157: 421–433PubMedCrossRefGoogle Scholar
  94. Matsuda Y and Colman B (1995) Induction of CO2 and bicarbonate transport in the green Alga Chlorella ellipsoidea. II. Evidence for induction in response to external CO2 concentration. Plant Physiol 108: 253–260PubMedGoogle Scholar
  95. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ et al. (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245–250PubMedCrossRefGoogle Scholar
  96. Mi H, Endo T, Ogawa T and Asada K (1995) Thylakoid membrane-bound, NADPH-specific pyridine nucleotide dehydrogenase complex mediated cyclic electron transport in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 36: 661–668Google Scholar
  97. Mi H, Endo T, Schreiber U, Ogawa T and Asada K (1992) Electron donation from cyclic and respiratory flows to photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol 33: 1233–1237Google Scholar
  98. Miller AG, Espie GS and Canvin DT (1990) Physiological aspects of CO2 and HCO3 transport by cyanobacteria: a review. Can J Bot 68: 1291–1302CrossRefGoogle Scholar
  99. Miller AG, Espie GE and Canvin DT (1991) The use of COS, a structural analog of CO2, to study CO2 transport in the cyanobacterium Synechococcus UTEX 625. Plant Physiol 90: 1221–1231CrossRefGoogle Scholar
  100. Miller AG, Turpin DH and Canvin DT (1984) Na+ requirement for growth, photosynthesis, and pH regulation in the alkalotolerant cyanobacterium Synechococcus leopoliensis. J Bacteriol 159: 100–106PubMedGoogle Scholar
  101. Mitchell C and Beardall J (1996) Inorganic carbon uptake by an Antarctic sea-ice diatom, Nitzschia frigida. Polar Biol 16: 95–99CrossRefGoogle Scholar
  102. Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F, Asamizu E, Nakamura Y, Tabata S, Yamato KT, Ohyama K and Fukuzawa H (2004) Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 135: 1595–1607PubMedCrossRefGoogle Scholar
  103. Montsant A, Jabbari K, Maheswari U and Bowler C (2005) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol 137: 500–513PubMedCrossRefGoogle Scholar
  104. Morita E, Abe T, Tsuzuki M, Fujiwana S, Sato N, Hirata A, Sonoike K and Nozaki H (2000) Role of pyrenoids in the CO2-concentrating mechanism: comparative morphology, physiology and molecular phylogenetic analysis of closely related strains of Chlamydomonas and Chloromonas. Planta 208: 365–372CrossRefGoogle Scholar
  105. Moroney JV and Ynalvez RA (2007) Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryot Cell 6: 1251–1259PubMedCrossRefGoogle Scholar
  106. Morse D, Salois P, Markovic P and Hastings JW (1995) A nuclear-encoded form II RuBisCo in dinoflagellates. Science 268: 1622–1624PubMedCrossRefGoogle Scholar
  107. Muscatine L, Goiran C, Land L, Jaubert J, Cuif JP and Allemand D (2005) Stable isotopes (delta C-13 and delta N-15) of organic matrix from coral skeleton. Proc Natl Acad Sci USA 102: 1525–1530PubMedCrossRefGoogle Scholar
  108. Nakamura Y, Kanakagiri S, Van, K, He W and Spalding MH (2005) Disruption of glycolate dehydrogenase gene in the high CO2 requiring mutant HCR89 of Chlamydomonas reinhardtii. Can J Bot 83: 820–833CrossRefGoogle Scholar
  109. Nassoury N, Fritz L and Morse D (2001) Circadian changes in ribulose-1,5-bisphosphate carboxylase/oxygenase distribution inside individual chloroplasts can account for the rhythm in dinoflagellate carbon fixation. Plant Cell 13: 923–934PubMedGoogle Scholar
  110. Nimer N-A, Ling MX, Brownlee C and Merret MJ (1999) Inorganic carbon limitation, exofacial carbonic anhydrase activity, and plasma membrane redox activity in marine phytoplankton species. J Phycol 35: 1200–1205CrossRefGoogle Scholar
  111. Nishimura T, Takahashi Y, Yamaguchi O, Suzuki H, Maeda S and Omata T (2008) Mechanism of low CO2-induced activation of the cmp bicarbonate transporter operon by a LysR family protein in the cyanobacterium Synechococcus elongatus strain PCC 7942. Mol Microbiol. 68:98–109PubMedCrossRefGoogle Scholar
  112. Ogawa T (1990) Mutants of Synechocystis PCC 6803 defective in inorganic carbon transport. Plant Physiol 94: 760–765PubMedCrossRefGoogle Scholar
  113. Ogawa T (1991a) A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC 6803. Proc Natl Acad Sci USA 88: 4275–4279PubMedCrossRefGoogle Scholar
  114. Ogawa T (1991b) Cloning and inactivation of a gene essential to inorganic carbon transport of Synechocystis PCC 6803. Plant Physiol 96: 280–284PubMedCrossRefGoogle Scholar
  115. Ogawa T (1992) Identification and characterization of the ictA/ndhL gene product essential to inorganic carbon transport of Synechocystis PCC 6803. Plant Physiol 99: 1604–1608PubMedCrossRefGoogle Scholar
  116. Ogawa T (1993) Molecular analysis of the CO2 concentrating mechanism in cyanobacteria. In: Yamamoto HY and Smith C (eds) Photosynthetic Responses to the Environment, pp 113–125. American Society of Plant Physiologist, RockvilleGoogle Scholar
  117. Ogawa T and Kaplan A (2003) Inorganic carbon acquisition systems in cyanobacteria. Photosynth Res 77: 105–115PubMedCrossRefGoogle Scholar
  118. Ogawa T and Mi H (2007) Cyanobacterial NADPH dehydrogenase complexes. Photosynth Res 93:69–77PubMedCrossRefGoogle Scholar
  119. Ogawa T and Ogren WL (1985) Action spectra for accumulation of inorganic carbon in the cyanobacterium, Anabaena variabilis. Photochem Photobiol 41: 583–587CrossRefGoogle Scholar
  120. Ogawa T, Miyano A and Inoue Y (1985) Photosystem-I driven inorganic carbon transport in the cyanobacterium, Anacystis nidulans. Biochim Biophys Acta 808: 77–84CrossRefGoogle Scholar
  121. Ohkawa H, Pakrasi HB and Ogawa T (2000) Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803. J Biol Chem 275: 31630–31634PubMedCrossRefGoogle Scholar
  122. Ohkawa H, Sonoda M, Katoh H and Ogawa T (1998) The use of mutants in the analysis of the CCM in cyanobacteria. Can J Bot 76: 1025–1034Google Scholar
  123. Ohkawa H, Sonoda M, Shibata M and Ogawa T (2001) Localization of NAD(P)H dehydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. J Bacteriol 183: 4938–4939PubMedCrossRefGoogle Scholar
  124. Ohnishi N, Mukherjee B, Tsujikawa T, Yanase M, Nakano H, Moroney JV and Fukuzawa H (2010) Expression of a low CO2-inducible protein, LCI1, increases inorganic carbon uptake in the green alga Chlamydomonas reinhardtii. Plant Cell 22: 3105–3117Google Scholar
  125. Omata T (1992) Characterization of the downstream region of cmpA: Identification of a gene cluster encoding a putative permease of the cyanobacterium Synechococcus PCC7942. In: Murata N (ed) Research in Photosynthesis, pp. 807–810. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  126. Omata T and Ogawa T (1985) Changes in the polypeptide composition of the cytoplasmic membrane of the cyanobacterium Anacystis nidulans during adaptation to low CO2 conditions. Plant Cell Physiol 26: 1075–1081Google Scholar
  127. Omata T and Ogawa T (1986) Biosynthesis of a 42-kD polypeptide in the cytoplasmic membrane of the cyanobacterium Anacystis nidulans strain R2 during adaptation to low CO2 conditions. Plant Physiol 80: 525–530PubMedCrossRefGoogle Scholar
  128. Omata T, Carlson TJ, Ogawa T and Piece J (1990) Sequencing and modification of the gene encoding the 42-kilodalton protein in the cytoplasmic membrane of Synechococcus PCC 7942. Plant Physiol 93: 305–311PubMedCrossRefGoogle Scholar
  129. Omata T, Gohta S, Takahashi Y, Harano Y and Maeda S (2001) Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria. J Bacteriol 183: 1891–1898PubMedCrossRefGoogle Scholar
  130. Omata T, Price GD, Badger MR, Okamura M, Gohta S and Ogawa T (1999) Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. Strain. Proc Natl Acad Sci USA 96: 13571–13576PubMedCrossRefGoogle Scholar
  131. Paasche E (2001) A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40: 503–529CrossRefGoogle Scholar
  132. Pollock SV, Prout DL, Godfrey AC, Lemaire SD and Moroney JV (2004) The Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment. Plant Mol Biol 56: 125–132PubMedCrossRefGoogle Scholar
  133. Price GD, Badger MR, Woodger FJ and Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59: 1441–1461PubMedCrossRefGoogle Scholar
  134. Price GD, Howitt SM, Harrison K and Badger MR (1993) Analysis of a genomic DNA region from the cyanobacterium Synechococcus sp. strain PCC 7942 involved in carboxysome assembly and function. J Bacteriol 175:2871–2879PubMedGoogle Scholar
  135. Price GD, Woodger FJ, Badger MR, Howitt SM and Tuker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA 101: 18228–18233PubMedCrossRefGoogle Scholar
  136. Prommeenate P, Lennon AM, Markert C, Hippler M and Nixon PJ (2004) Subunit composition of NDH-1 complexes of Synechocystis sp. PCC 6803 - Identification of two new ndh gene products with nuclear-encoded homologues in the chloroplast Ndh complex. J Biol Chem 279: 28165–28173PubMedCrossRefGoogle Scholar
  137. Ramazanov Z, Rawat M, Henk MC, Mason CB, Matthews SW and Moroney JV (1995) The induction of the CO2-concentrating mechanism is correlated with the formation of the starch sheath around the pyrenoid of Chlamydomonas reinhardtii. Planta 195: 210–216CrossRefGoogle Scholar
  138. Ratti S, Giordano M and Morse D (2007) CO2-concentrating mechanisms of the potentially toxic dinoflagellate Protoceratium reticulatum (Dinophyceae, Gonyaulacales). J Phycol. 43: 693–701CrossRefGoogle Scholar
  139. Rau GH, Takahashi T, and Des Marais DJ (1989) Latitudinal variations in plankton 13C: implications for CO2 and productivity in past oceans. Nature 341: 516–518PubMedCrossRefGoogle Scholar
  140. Rau GH, Takahashi T, Des Marais DJ and Martin JH (1992) The relationship between delta 13C of organic matter and [CO2 (aq)] in ocean surface water: Data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim Cosmochim Acta 56: 1413–1419PubMedCrossRefGoogle Scholar
  141. Raven JA (1991) Implications of inorganic C utilization: ecology, evolution and geochemistry. Can J Bot 69: 908–924CrossRefGoogle Scholar
  142. Raven JA (1994) Carbon fixation and carbon availability in marine phytoplankton. Photosynth Res 39: 259–273CrossRefGoogle Scholar
  143. Raven JA (1997) Inorganic carbon acquisition by marine autotrophs. Adv Bot Res 27: 85–209CrossRefGoogle Scholar
  144. Raven JA (2003) Inorganic carbon concentrating mechanisms in relation to the biology of algae. Photosynth Res 77: 155–171PubMedCrossRefGoogle Scholar
  145. Raven JA, Ball LA, Beardal J, Giordano M and Maberly SC (2005) Algae lacking carbon concentrating mechanisms. Can J Bot 83: 879–890CrossRefGoogle Scholar
  146. Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil T R Soc B 303: 2641–2650CrossRefGoogle Scholar
  147. Raven JA, Johnston AM and Turpin DH (1993) Influence of changes in CO2 concentration and temperature on marine phytoplankton 13C/12C ratios: an analysis of possible mechanisms. Global Planet Change 8: 1–12CrossRefGoogle Scholar
  148. Reinfelder JR, Kraepiel AML and Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407: 996–999PubMedCrossRefGoogle Scholar
  149. Reinfelder JR, Milligan AJ and Morel FMM (2004) The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol 135: 2106–2111PubMedCrossRefGoogle Scholar
  150. Reinhold L, Volokita M, Zenvirth D and Kaplan A (1984) Is HCO3 transport in Anabaena a Na+-symport? Plant Physiol 76: 1090–1092PubMedCrossRefGoogle Scholar
  151. Rexach J, Montero B, Fernandez E and Galvan A (1999) Differential regulation of the high affinity nitrite transport system III and IV in Chlamydomonas reinhardtii. J Biol Chem 274: 27801–27806PubMedCrossRefGoogle Scholar
  152. Riebesell U (2004) Effects of CO2 enrichment on marine phytoplankton. J Oceanogr 60: 719–729CrossRefGoogle Scholar
  153. Riebesell U, Wolf-Gladrow D and Smetacek V (1993) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361: 249–251CrossRefGoogle Scholar
  154. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE and Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407: 364–367PubMedCrossRefGoogle Scholar
  155. Roberts K, Granum E, Leegood RC and Raven JA (2007) C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol 145: 230–235PubMedCrossRefGoogle Scholar
  156. Roberts SB, Lane TW and Morel FMM (1997) Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (bacillariophyceae). J Phycol 33: 845–850CrossRefGoogle Scholar
  157. Rochaix JD, Goldschmidt-Clermont M and Merchant S (eds) (1998) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, Advances in Photosy­nthesis, Vol 7, Kluwer Academic Publishers, DordrechtGoogle Scholar
  158. Rost B, Riebesell U, Burkhardt S and Sültemeyer D (2003) Carbon acquisition of bloom-forming marine phytoplankton. Limnol Oceanogr 48: 55–67CrossRefGoogle Scholar
  159. Rost B, Zondervan I and Riebesell U (2002) Light-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi. Limnol Oceanogr 47: 120–128CrossRefGoogle Scholar
  160. Salon C, Mir NA and Canvin DT (1996) Influx and efflux of inorganic carbon in Synechococcus UTEX 625. Plant Cell Environ 19: 247–259CrossRefGoogle Scholar
  161. Satoh D, Hiraoka Y, Colman B and Matsuda Y (2001) Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum. Plant Physiol 126: 1459–1470PubMedCrossRefGoogle Scholar
  162. Schulz KG, Rost B, Burkhardt S, Riebesell U, Thoms S and Wolf-Gladrow DA (2007) The effect of iron availability on the regulation of inorganic carbon acquisition in the coccolithophore Emiliania huxleyi and the significance of cellular compartmentation for stable carbon isotope fractionation. Geochim Cosmochim Acta 71: 5301–5312CrossRefGoogle Scholar
  163. Schwarz R, Lieman-Hurwitz J, Hassidim M and Kaplan A (1992) Phenotypic complementation of high-CO2-requiring mutants of the cyanobacterium Synechococcus sp. PCC 7942 by inosine 5’- monophosphate. Plant Physiol 100: 1987–1993PubMedCrossRefGoogle Scholar
  164. Schwarz R, Reinhold L and Kaplan A (1995) Low activation state of ribulose 1,5-bisphosphate carboxylase/oxygenase in carboxysome-defective Synechococcus mutants. Plant Physiol 108: 183–190PubMedGoogle Scholar
  165. Sekino K and Shiraiwa Y (1994) Accumulation and utilization of dissolved inorganic carbon by a marine unicellular coccolithophorid, Emiliania huxleyi. Plant Cell Physiol 35: 353–361Google Scholar
  166. Sharkey TD and Berry JA (1985) Carbon isotope fractionation in algae as influenced by inducible CO2 concentrating mechanism. In: Lucus WJ and Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. pp 339–401. American Society of Plant Physiologists, RockvilleGoogle Scholar
  167. Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, Kaplan A and Ogawa T (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria. Function and phylogenetic analysis. J Biol Chem 277: 18658–18664PubMedCrossRefGoogle Scholar
  168. Shibata M, Ohkawa H, Kaneko T, Fukuzawa H, Tabata S, Kaplan A and Ogawa T (2001) Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: Genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Nat Acad Sci USA 98: 11789–11794PubMedCrossRefGoogle Scholar
  169. Shiraiwa Y (2003) Physiological regulation of carbon fixation in the photosynthesis and calcification of coccolithophorids. Comp Biochem Physiol B-Biochem & Mol Biol 136: 775–783CrossRefGoogle Scholar
  170. Sippola K and Aro EM (1999) Thiol redox state regulates expression of psbA genes in Synechococcus sp. PCC 7942. Plant Mol Biol 41:425–433PubMedCrossRefGoogle Scholar
  171. So AKC, Kassam A and Espie GS (1998) Na+-dependent HCO3 transport in the cyanobacterium Synechocystis PCC6803. Can J Bot 76: 1084–1091Google Scholar
  172. Soupene E, Inwood W and Kustu S (2004) Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2. Proc Natl Acad Sci USA 101: 7787–7792PubMedCrossRefGoogle Scholar
  173. Spalding MH, Spreitzer RJ and Ogren WL (1983) Reduced inorganic carbon transport in a CO2-requiring mutant of Chlamydomonas reinhardtii. Plant Physiol 73: 273–276PubMedCrossRefGoogle Scholar
  174. Steinke M, Evans C, Lee GA and Malin G (2007) Substrate kinetics of DMSP-lyases in axenic cultures and mesocosm populations of Emiliania huxleyi. Aquat Sci 69: 352–359CrossRefGoogle Scholar
  175. Sukenik A, Eshkol R, Livne A, Hadas O, Rom M, Tchernov D, Vardi A and Kaplan A (2002) Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47:1656–1663CrossRefGoogle Scholar
  176. Sukenik A, Tchernov D, Huerta E, Lubian LM, Kaplan A and Livne A (1997) Uptake, efflux and photosynthetic utilization of inorganic carbon by the marine Eustigmatophyte nannochloropsis sp. J Phycol 33: 969–974CrossRefGoogle Scholar
  177. Suzuki K, Marek LF and Spalding MH (1990) A photorespiratory mutant of Chlamydomonas reinhardtii. Plant Physiol 93: 231–237PubMedCrossRefGoogle Scholar
  178. Szabo E and Colman B (2007) Isolation and characterization of carbonic anhydrases from the marine diatom Phaeodactylum tricornutum. Physiol Plant 129: 484–492CrossRefGoogle Scholar
  179. Takahashi Y, Yamaguchi O and Omata T (2004) Roles of CmpR, a LysR family transcriptional regulator, in acclimation of the cyanobacterium Synechococcus sp. strain PCC 7942 to low-CO2 and high-light conditions. Mol Microbiol 52: 837–845PubMedCrossRefGoogle Scholar
  180. Tanaka Y, Nakatsuma D, Harada H, Ishida M and Matsuda Y (2005) Localization of soluble β-carbonic anhydrase in the marine diatom Phaeodactylum tricornutum sorting to the chloroplast and cluster formation on the girdle lamellae. Plant Physiol 138: 207–217PubMedCrossRefGoogle Scholar
  181. Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M and Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101: 13531–13535PubMedCrossRefGoogle Scholar
  182. Tchernov D, Hassidim M, Luz B, Sukenik A, Reinhold L and Kaplan A (1997) Sustained net CO2 evolution during photosynthesis by marine microorganisms. Curr Biol 7: 723–728PubMedCrossRefGoogle Scholar
  183. Tchernov D, Helman Y, Keren N, Luz B, Ohad I, Reinhold L, Ogawa T and Kaplan A (2001) Passive entry of CO2 and its energy-dependent intracellular conversion to HCO3 in cyanobacteria are driven by a photosystem I-generated ΔH+. J Biol Chem 276: 23450–23455PubMedCrossRefGoogle Scholar
  184. Tchernov D, Silverman J, Luz B, Reinhold L and Kaplan A (2003) Massive light-dependent cycling of inorganic carbon between photosynthetic microorganisms and their surroundings. Photosynth Res 77: 95–103PubMedCrossRefGoogle Scholar
  185. Tortell PD and Morel FMM (2002) Sources of inorganic carbon for phytoplankton in the eastern subtropical and equatorial pacific ocean. Limnol Oceanogr 47: 1012–1022CrossRefGoogle Scholar
  186. Tortell PD, DiTullio GR, Sigman PM and Morel FMM (2002) CO2 effects on taxonomic composition and nutrient utilization in an equatorial pacific phytoplankton assemblage. Marine Ecol Prog Ser 23: 37–43CrossRefGoogle Scholar
  187. Turkina MV, Blanco-Rivero A, Vainonen JP, Vener AV and Villarejo A (2006) CO2 limitation induces specific redox-dependent protein phosphorylation in Chlamydomonas reinhardtii. Proteomics 6: 2693–2704PubMedCrossRefGoogle Scholar
  188. Tyrrell PN, Kandasamy RA, Crotty CM and Espie GS (1996) Ethoxyzolamide differentially inhibits CO2 uptake and Na+-independent and Na+-dependent HCO3 uptake in the cyanobacterium Synechococcus sp. UTEX 625. Plant Physiol 112: 79–88PubMedGoogle Scholar
  189. Van K and Spalding MH (1999) Periplasmic carbonic anhydrase structural gene (Cah1) mutant in Chlamydomonas reinhardtii. Plant Physiol 120: 757–64PubMedCrossRefGoogle Scholar
  190. Vardi A, Berman-Frank I, Rozenberg T, Hadas O, Kaplan A and Levine A (1999) Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr Biol 9: 1061–1064PubMedCrossRefGoogle Scholar
  191. Vardi A, Schatz D, Beeri K, Motro U, Sukenik A, Levine A and Kaplan A (2002) Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr Biol 12: 1767–1772PubMedCrossRefGoogle Scholar
  192. Volokita M, Zenvirth D, Kaplan A and Reinhold L (1984) Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis. Plant Physiol 76: 599–602PubMedCrossRefGoogle Scholar
  193. Wang HL, Postier BL and Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279: 5739–5751PubMedCrossRefGoogle Scholar
  194. Wang Y and Spalding MH (2006) An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 103: 10110–10115PubMedCrossRefGoogle Scholar
  195. Woodger FJ, Badger MR and Price GD (2003) Inorganic carbon limitation induces transcripts encoding components of the CO2-concentrating mechanism in Synechococcus sp. PCC7942 through a redox-independent pathway. Plant Physiol 133: 2069–2080PubMedCrossRefGoogle Scholar
  196. Woodger FJ, Bryant DA and Price GD (2005) Sensing of inorganic carbon limitation in Synechococcus PCC 7942 is correlated with the size of the internal inorganic carbon pool and involves oxygen. Plant Physiol 139:1959–1969PubMedCrossRefGoogle Scholar
  197. Woodger FJ, Bryant DA and Price GD (2007) Transcriptional regulation of the CO2-concentrating mechanism in a euryhaline, coastal marine cyanobacterium, Synechococcus sp. Strain PCC 7002: role of NdhR/CcmR. J Bacteriol 189:3335–3347PubMedCrossRefGoogle Scholar
  198. Xiang Y, Zhang J and Weeks DP (2001) The Cia5 gene controls formation of the carbon concentrating mechanism in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 98: 5341–5346PubMedCrossRefGoogle Scholar
  199. Xu M, Bernát G, Singh G, Mi H, Rögner M, Pakrasi HB and Ogawa T (2008a) Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Carbon Sequestration Systems. Plant Cell Physiol 49: 1672–1677PubMedCrossRefGoogle Scholar
  200. Xu M, Ogawa T, Pakrasi HP and Mi H (2008b) Identification and localization of the CupB protein involved in constitutive CO2 uptake in the cyanobacterium, Synechocystis sp. PCC 6803. Plant Cell Physiol 49: 994–997PubMedCrossRefGoogle Scholar
  201. Yamano T, Miura K and Fukuzawa H (2008) Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 147: 340–354PubMedCrossRefGoogle Scholar
  202. Yamano T, Tsujikawa T, Hatano K, Ozawa SI, Takahashi Y and Fukuzawa H (2010) Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol 51: 1453–1468Google Scholar
  203. Yoshioka S, Tanijuchi F, Miura K, Inoue T, Yamano T and Fukuzawa H (2004) The novel Myb transcription factor LCR1 regulates the CO2-response gene Cah1, encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Plant Cell 16: 1466–1477PubMedCrossRefGoogle Scholar
  204. Zhang P, Battchikova N, Jansen T, Appel J, Ogawa T and Aro EM (2004) Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp. PCC 6803. Plant Cell 16: 3326–3340PubMedCrossRefGoogle Scholar
  205. Zhang P, Battchikova N, Paakkarinen V, Katoh H, Iwai M, Ikeuchi M, Pakrasi HB, Ogawa T and Aro EM (2005) Isolation, subunit composition and interaction of the NDH-1 complexes from Thermosynechococcus elongatus BP-1. Biochem J 390: 513–520PubMedCrossRefGoogle Scholar
  206. Zhang P, Sicora CI, Vorontsova N, Allahverdiyeva Y, Battchikova N, Nixon PJ and Aro EM (2007) FtsH protease is required for induction of inorganic carbon acquisition complexes in Synechocystis sp. PCC 6803. Mol Microbiol 65: 728–740CrossRefGoogle Scholar
  207. Zondervan I (2007) The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—A review. Deep Sea Research Part II: Topical Studies in Oceanography 54: 521–525CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Division of Integrated Life Science, Graduate School of BiostudiesKyoto UniversityKyotoJapan
  2. 2.Institute of Plant Physiology and EcologyShanghaiChina
  3. 3.Department of Plant and Environmental SciencesThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations