Understanding Photosynthetic Electron Transport Using Chlamydomonas: The Path from Classical Genetics to High Throughput Genomics

  • Arthur R. Grossman
  • David González-Ballester
  • Shaun Bailey
  • Steven J. Karpowicz
  • Sabeeha S. Merchant
Chapter
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 33)

Summary

The Volvocales, an order of the green algal class Chlorophyceae, and the Streptophyte algae, the lineage that evolved into land plants, shared a common ancestor about one billion years ago. Chlamydomonas reinhardtii (Chlamydomonas throughout) a unicellular member of the Volvocales, has traditionally been considered a strong model organism that has been probed with sophisticated tools and methodologies to elucidate numerous biological processes. Perhaps the most in-depth analyses of Chlamydomonas have focused on defining proteins and complexes involved in the function and biogenesis of chloroplasts as well as the structure, assembly, and function of eukaryotic flagella (cilia); the latter are inherited from the common ancestor of animals and plants, but were lost during the evolution of land plants. This review emphasizes how Chlamydomonas has been used to elucidate a number of different activities associated with photosynthetic function. Many of these analyses were performed using classical genetic, biochemical and physiological approaches. However, recently, the DOE – Joint Genome Institute has sequenced the nuclear genome of Chlamydomonas (∼120 Mb) and has helped the community of researchers perform comparative genomic analyses. Comparisons of deduced Chlamydomonas proteins has identified a set of proteins specifically present in the green lineage and photosynthetic organisms, but not present in nonphotosynthetic organisms; this protein assemblage has been designated the GreenCut. Many proteins in the GreenCut are likely resident in the chloroplast and potentially associated with photosynthetic processes. Toward the end of this text we discuss the ways in which genomics has added a new dimension to our analyses of photosynthetic processes.

Abbreviations

A

antheroxanthin

ALAD

δ-aminolevulinic acid dehydratase

BAC

bacterial artificial chromosome

CES

control of epistasis of synthesis

CGL

refers to proteins of the GreenCut conserved in the green lineage organisms

CGLD

refers to proteins of the GreenCut conserved in the green lineage organisms and the diatoms

Chl

chlorophyll

Chl+

chlorophyll cation

CHLH1

H subunit of Mg-chelatase

CHLI1

I subunit of the Mg-chelatase

CTH1

catalyzes the cyclase reaction in chlorophyll biosynthesis

CP43

chlorophyll binding antenna protein tightly bound to photosystem II

CPXI

coproporphyrinogen oxidase

CRD

an iron requiring cyclase involve in chlorophyll synthesis

D1

the rapidly turning over reaction center protein of photosystem II

D2

reaction center protein of photosystem II that associates with D1

DEG

protease involved in chloroplast biogenesis

Fd

ferredoxin

Fe

iron

FNR

ferredoxin NADP oxido-reductase

FQR

ferredoxin-quinone reductase

FLU

protein that regulates chlorophyll biosynthesis

EST

expressed sequence tag

FTSH

protease involved in the turnover of proteins of the photosynthetic apparatus

GSA

glutamate 1-semialdehyde (GSA) aminotransferase

GLK

golden-like kinase transcriptional regulator

HEMA

glutamyl tRNA reductase

IsiA

antenna chlorophyll binding proteins synthesized during iron deprivation (similar to CP43)

IsiB

flavodoxin synthesized during iron deprivation

JGI

Joint Genome Institute

LHC

light harvesting complex

LHCII

light harvesting complex II

LHCA

light harvesting complex of photosystem I

LHCB

light harvesting proteins associated with photosystem II

LHCSR

protein in the light harvesting complex family that may be involved in photoprotection in Chlamydomonas

MCA1

protein required for stable accumulation of petA RNA

Mg-ProtoIX

Mg-protoporphyrin IX

Mg-ProtoIXMe

Mg-protoporphyrin IX-monomethylester

NAB1

forms a complex with mRNA encoding light harvesting proteins

NDH1

NADH:ubiquinone oxidoreductase

OEE

oxygen evolving complex

PGR1 and PGR5

protein thought to be part of the ferredoxin-quinone reductase complex

NPQ

non-photochemical quenching

PetA

cytochrome f

PSI

photosystem I

PSII

photosystem II

PSAH or PSIH

specific polypeptide associated with photosystem II

PSA

proteins associated with photosystem I (an additional letter indicates the subunit of the complex)

PSB

protein associated with photosystem II (an additional letter indicates the subunit of the complex)

PSBS

protein in the light harvesting family involved in qE-based quenching

PQ

plastoquinone

qE

quenching through the formation of an electrochemical gradient

qI

quenching through inhibition of photosystem II

qT

quenching through the formation of a state transition

rbcL

gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase

RNAi

RNA interference

RNA-seq

new generation of RNA sequencing

ROS

reactive oxygen species

RuBP

carboxylase ribulose-1,5-bisphosphate carboxylase

STN7

Arabidopsis serine threonine protein kinase associated with state transition

STN8

Arabidopsis protein with homology to STN7

STT7

Chlamydomonas serine threonine protein kinase associated with state transition

TCA1

protein involved in the translation of petA mRNA

TIC

proteins on the inner membrane of the chloroplast envelop involved in transporting proteins into the chloroplast

TOC

proteins on outer inner membrane of the chloroplast envelop involved in transporting proteins into the chloroplast

V

violaxanthin

Z

zeaxanthin

Z+

zeaxanthin cation

References

  1. Adam Z and Clarke AK (2002) Cutting edge of chloroplast proteolysis. Trends Plant Sci 7: 451–456PubMedCrossRefGoogle Scholar
  2. Adam Z, Rudella A and van Wijk KJ (2006) Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr Opin Plant Biol 9: 234–240PubMedCrossRefGoogle Scholar
  3. Adir N and Ohad I (1988) Structural properties of the D1 and surrounding photosystem II polypeptides as revealed by their interaction with cross-linking reagents. J Biol Chem 263: 283–289PubMedGoogle Scholar
  4. Albertsson P (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6: 349–358PubMedCrossRefGoogle Scholar
  5. Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335PubMedCrossRefGoogle Scholar
  6. Allen MD, Kropat J and Merchant SS (2008) Regulation and localization of isoforms of the aerobic oxidative cyclase in Chlamydomonas reinhardtii. Photochem Photobiol 84: 1336–1342PubMedCrossRefGoogle Scholar
  7. Anderson JM, Chow WS and Park YI (1995) The grand design of photosynthesis: Acclimation of the photosynthetic apparatus to environmental cues. Photosyn Res 46: 129–139CrossRefGoogle Scholar
  8. Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593: 427–440PubMedCrossRefGoogle Scholar
  9. Apel K and Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373–399PubMedCrossRefGoogle Scholar
  10. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH et al. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79–86PubMedCrossRefGoogle Scholar
  11. Arnon DI (1959) Conversion of light into chemical energy in photosynthesis. Nature 184: 10–21PubMedGoogle Scholar
  12. Aro EM, McCaffrey S and Anderson JM (1993a) Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol 103: 835–843PubMedGoogle Scholar
  13. Aro E-M, Virgin I and Andersson B (1993b) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134PubMedCrossRefGoogle Scholar
  14. Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A et al. (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56: 347–356PubMedCrossRefGoogle Scholar
  15. Asamizu E, Nakamura Y, Sato S, Fukuzawa H and Tabata S (1999) A large scale structural analysis of cDNAs in a unicellular green alga Chlamydomonas reinhardtii. Generation of 3,433 non-redundant expressed sequence tags. DNA Res 6: 369–373PubMedCrossRefGoogle Scholar
  16. Asamizu E, Miura K, Kucho K, Inoue Y, Fukuzawa H, Ohyama K et al. (2000) Generation of expressed sequence tags from low-CO2 and high-CO2 adapted cells of Chlamydomonas reinhardtii. DNA Res 7: 305–307PubMedCrossRefGoogle Scholar
  17. Bailey S and Grossman A (2008) Photoprotection in cyanobacteria: regulation of light harvesting. Photochem Photobiol 84: 1410–1420PubMedCrossRefGoogle Scholar
  18. Bailey S, Walters RG, Jansson S and Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213: 794–801PubMedCrossRefGoogle Scholar
  19. Bailey S, Thompson E, Nixon PJ, Horton P, Mullineaux CW, Robinson C and Mann NH (2002) A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J Biol Chem 277: 2006–2011PubMedCrossRefGoogle Scholar
  20. Bailey S, Melis A, Mackey KR, Cardol P, Finazzi G, van Dijken G et al. (2008) Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim Biophys Acta 1777: 269–276PubMedCrossRefGoogle Scholar
  21. Ball S and Deschamps P (2009) Starch metabolism. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 1–40. Elsevier, AmsterdamCrossRefGoogle Scholar
  22. Ballottari M, Dall’Osto L, Morosinotto T and Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282: 8947–8958PubMedCrossRefGoogle Scholar
  23. Barber J and Andersson B (1992) Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci 17: 61–66PubMedCrossRefGoogle Scholar
  24. Barbier G, Oesterhelt C, Larson MD, Halgren RG, Wilkerson C, Garavito RM et al. (2005) Comparative genomics of two closely related unicellular thermo-acidophilic redalgae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol 137: 460–474PubMedCrossRefGoogle Scholar
  25. Barneche F, Winter V, Crevecoeur M and Rochaix JD (2006) ATAB2 is a novel factor in the signaling pathway of light-controlled synthesis of photosystem proteins. Embo J 25: 5907–5918PubMedCrossRefGoogle Scholar
  26. Bartsch S, Monnet J, Selbach K, Quigley F, Gray J, von Wettstein D et al. (2008) Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism. Proc Natl Acad Sci USA 105: 4933–4938PubMedCrossRefGoogle Scholar
  27. Battchikova N and Aro EM (2007) Cyanobacterial NDH-1 complexes: multiplicity in function and subunit composition. Physiol Plant 131: 22–32PubMedCrossRefGoogle Scholar
  28. Beale SI (2009) Biosynthesis of chlorophylls and hemes. In: Harris EH, Stern D and Witman GB (eds) The Chlamy­domonas Sourcebook, pp 731–798. Elsevier, AmsterdamCrossRefGoogle Scholar
  29. Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222: 743–756PubMedCrossRefGoogle Scholar
  30. Bellafiore S, Barneche F, Peltier G and Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433: 892–895PubMedCrossRefGoogle Scholar
  31. Bennett J, Steinback KE and Arntzen CJ (1980) Chloroplast phosphoproteins: regulation of excitation energy transfer by phosphorylation of thylakoid membrane polypeptides. Proc Natl Acad Sci USA 77: 5253–5257PubMedCrossRefGoogle Scholar
  32. Bennoun P and Levine RP (1967) Detecting mutants that have impaired photosynthesis by their increased level of fluorescence. Plant Physiol 42: 1284–1287PubMedCrossRefGoogle Scholar
  33. Bennoun P and Delepelaire P (1982) Isolation of photosynthesis mutants in Chlamydomonas. In: Edelman M, Chua N-H, Hallick RB (eds) Methods in Chloroplast Molecular Biology, pp 25–38. Elsevier Biomedical Press, AmsterdamGoogle Scholar
  34. Bennoun P and Beal D (1997) Screening algal mutant colonies with altered thylakoid electrochemical gradient through fluorescence and delayed luminescence digital imaging. Photosyn Res 51: 161–165CrossRefGoogle Scholar
  35. Bennoun P, Spierer-Herz M, Erickson J, Girard-Bascou J, Pierre Y, Delosme M and Rochaix JD (1986) Charac­terization of photosystem II mutants of Chlamydomonas reinhardtii lacking psbA gene. Plant Mol Biol 6: 151–160CrossRefGoogle Scholar
  36. Bernd KK and Kohorn BD (1998) Tip loci: Six Chlamydomonas nuclear suppressors that permit the translocation of proteins with mutant thylakoid signal sequences. Genetics 149: 1293–1301PubMedGoogle Scholar
  37. Bibby TS, Nield J, Partensky F and Barber J (2001) Oxyphoto­bacteria. Antenna ring around photosystem I. Nature 413: 590PubMedCrossRefGoogle Scholar
  38. Bloodgood RA (2009) The Chlamydomonas flagellar membrane and its dynamic properties. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 309–368. Elsevier, AmsterdamCrossRefGoogle Scholar
  39. Bollenbach TJ, Schuster G and Stern DB (2004) Cooperation of endo- and exoribonucleases in chloroplast mRNA turnover. Prog Nucleic Acid Res Mol Biol 78: 305–337PubMedCrossRefGoogle Scholar
  40. Bollenbach TJ, Sharwood RE, Gutierrez R, Lerbs-Mache S and Stern DB (2009) The RNA-binding proteins CSP41a and CSP41b may regulate transcription and translation of chloroplast-encoded RNAs in Arabidopsis. Plant Mol Biol 69: 541–552PubMedCrossRefGoogle Scholar
  41. Bonardi V, Pesaresi P, Becker T, Schleiff E, Wagner R, Pfannschmidt T et al. (2005) Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437: 1179–1182PubMedCrossRefGoogle Scholar
  42. Bonaventura C and Meyers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189: 366–383PubMedCrossRefGoogle Scholar
  43. Boudreau E, Takahashi Y, Lemieux C, Turmel M and Rochaix J-D (1997) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 16: 6095–6104PubMedCrossRefGoogle Scholar
  44. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A et al. (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456: 239–244PubMedCrossRefGoogle Scholar
  45. Caffarri S, Frigerio S, Olivieri E, Righetti PG and Bassi R (2005) Differential accumulation of Lhcb gene products in thylakoid membranes of Zea mays plants grown under contrasting light and temperature conditions. Proteomics 5: 758–768PubMedCrossRefGoogle Scholar
  46. Camargo A, Llamas A, Schnell RA, Higuera JJ, Gonzalez-Ballester D, Lefebvre PA et al. (2007) Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell 19: 3491–3503PubMedCrossRefGoogle Scholar
  47. Cardol P and Remacle C (2009) The mitochondrial genome. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 445–468. Elsevier, AmsterdamCrossRefGoogle Scholar
  48. Cardol P, Bailleul B, Rappaport F, Derelle E, Béal D, Breyton C, Bailey S, Wollman FA, Grossman A, Moreau H and Finazzi G. (2008) An original adaptation of ­photosynthesis in the marine green alga Ostreococcus. Proc Natl Acad Sci USA 105: 7881–7886PubMedCrossRefGoogle Scholar
  49. Castruita M, Casero D, Karpowicz SJ, Kropat J, Vieler A, Hsieh SI, Yan W, Cokus S, Loo JA, Benning C, Pellegrini M and Merchant SS (2010) Systems biology approach in chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell. 2011 23: 1273–1292Google Scholar
  50. Chekounova E, Voronetskaya V, Papenbrock J, Grimm B and Beck CF (2001) Characterization of Chlamydomonas mutants defective in the H subunit of Mg-chelatase. Mol Gen Genom 266: 363–373CrossRefGoogle Scholar
  51. Chen M, Bibby TS, Nield J, Larkum A and Barber J (2005) Iron deficiency induces a chlorophyll d-binding Pcb antenna system around Photosystem I in Acaryochloris marina. Biochim Biophys Acta 1708: 367–374PubMedCrossRefGoogle Scholar
  52. Chen Z, Chastain CJ, Al-Abed SR, Chollet R and Spreitzer RJ (1988) Reduced CO2/O2 specificity of ribulose-1,5-biphosphate carboxylase/oxygenase in a temperature-sensitive chloroplast mutant of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 85: 4696–4699PubMedCrossRefGoogle Scholar
  53. Cheregi O, Sicora C, Kos PB, Barker M, Nixon PJ and Vass I (2007) The role of the FtsH and Deg proteases in the repair of UV-B radiation-damaged photosystem II in the cyanobacterium Synechocystis PCC 6803. Biochim Biophys Acta 1767: 820–828PubMedCrossRefGoogle Scholar
  54. Choquet Y and Vallon O (2000) Synthesis, assembly and degradation of thylakoid membrane proteins. Biochimie 82: 615–634PubMedCrossRefGoogle Scholar
  55. Choquet Y and Wollman FA (2002) Translational regulations as specific traits of chloroplast gene expression. FEBS Lett 529: 39–42PubMedCrossRefGoogle Scholar
  56. Choquet Y and Wollman FA (2009) The CES process. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 1027-1063. Elsevier, AmsterdamCrossRefGoogle Scholar
  57. Choquet Y, Zito F, Wostrikoff K and Wollman FA (2003) Cytochrome f translation in Chlamydomonas chloroplast is autoregulated by its carboxyl-terminal domain. Plant Cell 15: 1443–1454PubMedCrossRefGoogle Scholar
  58. Choquet Y, Stem DB, Wostrikoff K, Kuras R, Girard-Bascou J and Wollman F-A (1998) Translation of cytochrome is autoregulated through the 5’-untranslated region of petA mRNA in Chlamydomonas chloroplasts. Proc Natl Acad Sci USA 95: 4380–4385PubMedCrossRefGoogle Scholar
  59. Chua N-H and Bennoun P (1975) Thylakoid membrane polypeptides of Chlamydomonas reinhardtii: Wild-type and mutant strains deficient in photosystem II reaction center. Proc Natl Acad Sci USA 72: 2175–2179PubMedCrossRefGoogle Scholar
  60. Chua N-H and Gillham NW (1977) The sites of synthesis of the principal thylakoid membrane polypeptides in Chlamydomonas reinhardtii. J Cell Biol 74: 441–452PubMedCrossRefGoogle Scholar
  61. Chua NH and Schmidt GW (1978) Post-translational transport into intact chloroplasts of a precursor to the small subunit of ribulose-1,5-bisphosphate carboxylase. Proc Natl Acad Sci USA 75: 6110–6114PubMedCrossRefGoogle Scholar
  62. Cline K and Henry R (1996) Import and routing of nucleus-encoded chloroplast proteins. Annu Rev Cell Devel Biol 12: 1–26CrossRefGoogle Scholar
  63. Cognat V, Deragon JM, Vinogradova E, Salinas T, Remacle C and Marechal-Drouard L (2008) On the evolution and expression of Chlamydomonas reinhardtii nucleus-encoded transfer RNA genes. Genetics 179: 113–123PubMedCrossRefGoogle Scholar
  64. Cohen I, Sapir Y and Shapira M (2006) A conserved mechanism controls translation of Rubisco large subunit in different photosynthetic organisms. Plant Physiol 141: 1089–1097PubMedCrossRefGoogle Scholar
  65. Cole DG (2009) Intraflagellar transport. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 71–114. Elsevier, AmsterdamCrossRefGoogle Scholar
  66. DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D, Finazzi G et al (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132: 273–285PubMedCrossRefGoogle Scholar
  67. Danielsson R and Albertsson PA (2009) Fragmentation and separation analysis of the photosynthetic membrane from spinach. Biochim Biophys Acta 1787: 25–36PubMedCrossRefGoogle Scholar
  68. Danielsson R, Suorsa M, Paakkarinen V, Albertsson PA, Styring S, Aro EM and Mamedov F (2006) Dimeric and monomeric organization of photosystem II. Distribution of five distinct complexes in the different domains of the thylakoid membrane. J Biol Chem 281: 14241–14249PubMedCrossRefGoogle Scholar
  69. Dannehl H, Herbik A and Godde D (1995) Stress induced degradation of the photosynthetic apparatus is accompanied by changes in thylakoid protein turnover and phosphorylation. Physiol Plant 93: 179–186CrossRefGoogle Scholar
  70. Davies J, Yildiz F and Grossman, AR (1996) Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. Embo J 15: 2150–2159PubMedGoogle Scholar
  71. Davies JP, Weeks DP and Grossman AR (1992) Expression of the arylsulfatase gene from the ß2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res 20: 2959–2965PubMedCrossRefGoogle Scholar
  72. de Vitry C and Kuras R (2009) The cytochrome b 6       f complex. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 603–638. Elsevier, AmsterdamCrossRefGoogle Scholar
  73. de Vitry C, Olive J, Drapier D, Recouvreur M and Wollman FA (1989) Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii. J Cell Biol 109: 991–1006PubMedCrossRefGoogle Scholar
  74. Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3  Å resolution. Nature 318: 618–624PubMedCrossRefGoogle Scholar
  75. Delepelaire P and Chua N-H (1979) Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4°C: Characterization of two additional chlorophyll a-protein complexes. Proc Natl Acad Sci USA 76: 111–115PubMedCrossRefGoogle Scholar
  76. Dent RM, Haglund CM, Chin BL, Kobayashi MC and Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 137: 545–556PubMedCrossRefGoogle Scholar
  77. Depege N, Bellafiore S and Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299: 1572–1575PubMedCrossRefGoogle Scholar
  78. Desikan R, A-H-Mackerness S, Hancock JT and Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127: 159–172PubMedCrossRefGoogle Scholar
  79. Dieckmann CL (2003) Eyespot placement and assembly in the green alga Chlamydomonas. Bioessays 25: 410–416PubMedCrossRefGoogle Scholar
  80. Dobberstein B, Blobel G and Chua N-H (1977) In vivo synthesis and processing of a putative precursor for the small subunit of ribulose- 1,5-bisphosphate carboxylase of Chlamydomonas reinhardtii. J Plant Physiol 126: 467–473Google Scholar
  81. Drager RG, Girard-Bascou J, Choquet Y, Kindle KL and Stern DB (1998) In vivo evidence for 5’–>3’ exoribonuclease degradation of an unstable chloroplast mRNA. Plant J 13: 85–96PubMedCrossRefGoogle Scholar
  82. Drapier D, Rimbault B, Vallon O, Wollman FA, and Choquet Y (2007) Intertwined translational regulations set uneven stoichiometry of chloroplast ATP synthase subunits. Embo J 26: 3581–3591PubMedCrossRefGoogle Scholar
  83. Dron M, Rahire M, Rochaix J-D, and Mets L (1983) First DNA sequence of a chloroplast mutation: A missense alteration in the ribulosebisphosphate carboxylase large subunit gene. Plasmid 9: 321–324PubMedCrossRefGoogle Scholar
  84. Dubini A, Mus F, Seibert M, Grossman AR and Posewitz MC (2009) Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity. J Biol Chem 284: 7201–7213PubMedCrossRefGoogle Scholar
  85. Dutcher SK (1995) Flagellar assembly in two hundred and fifty easy-to-follow steps. Trends Genet 11: 398–404PubMedCrossRefGoogle Scholar
  86. Eberhard S, Jain M, Im CS, Pollock S, Shrager J, Lin Y et al (2006) Generation of an oligonucleotide array for ana­lysis of gene expression in Chlamydomonas reinhardtii. Curr Genet 49: 1–19CrossRefGoogle Scholar
  87. Eberhard S, Finazzi G and Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42: 463–515PubMedCrossRefGoogle Scholar
  88. Edelman M and Mattoo AK (2008) D1-protein dynamics in photosystem II: the lingering enigma. Photosynth Res 98: 609–620PubMedCrossRefGoogle Scholar
  89. Endo T, Ishida S, Ishikawa N and Sato F (2008) Chloroplastic NAD(P)H dehydrogenase complex and cyclic electron transport around photosystem I. Mol Cell 25: 158–162Google Scholar
  90. Erickson J, Rahire M, Malnoe P, Girard-Bascou J, Pierre Y, Bennoun P and Rochaix JD (1986) Lack of D2 protein in a Chlamydomonas reinhardtii psbD mutant affects photosystem II stability and D1 expression. Embo J 5: 1745–1754PubMedGoogle Scholar
  91. Erickson JM, Rahire M, Rennoun P, Delepelaire P, Diner B and Rochaix, J-D (1984) Herbicide resistance in Chlamydomonas reinhardtii results from a mutation in the chloroplast gene for the 32-kilodalton protein of photosystem II. Proc Natl Acad Sci USA 81: 3617–3621PubMedCrossRefGoogle Scholar
  92. Erickson JM, Pfister K, Rahire M, Togasaki RK, Mets L and Rochaix JD (1989) Molecular and biophysical analysis of herbicide-resistant mutants of Chlamydomonas reinhardtii: structure-function relationship of the photosystem II D1 polypeptide. Plant Cell 1: 361–371PubMedGoogle Scholar
  93. Escoubas J-M, Lomas MW, LaRoche J and Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92: 10237–10241PubMedCrossRefGoogle Scholar
  94. Espineda CE, Linford AS, Devine D and Brusslan JA (1999) The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 96: 10507–10511PubMedCrossRefGoogle Scholar
  95. Fernández E and Galván, Á (2007) Inorganic nitrogen assi­milation in Chlamydomonas. J Exp Bot 58: 2279–2287PubMedCrossRefGoogle Scholar
  96. Fernández E and Galván Á (2008) Nitrate assimilation in Chlamydomonas. Eukaryot Cell 7: 555–559PubMedCrossRefGoogle Scholar
  97. Fernández E, Llamas A and Galván Á (2009) Nitrogen assimilation and its regulation. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 69–114. Elsevier, AmsterdamCrossRefGoogle Scholar
  98. Ferris PJ and Goodenough UW (1997) Mating type in Chlamydomonas is specified by mid, the minus-dominance gene. Genetics 146: 859–869PubMedGoogle Scholar
  99. Ferris PJ, Woessner JP and Goodenough UW (1996) A sex recognition glycoprotein is encoded by the plus mating-type gene fusl of Chlamydomonas reinhardtii. Mol Biol Cell 7: 1235–1248PubMedGoogle Scholar
  100. Ferris PJ, Pavolvic C, Fabrey S and Goodenough UW (1997) Rapid evolution of sex-related genes in Chlamydomonas. Proc Natl Acad Sci USA 94: 8634–8639PubMedCrossRefGoogle Scholar
  101. Fey V, Wagner R, Brautigam K, Wirtz M, Hell R, Dietzmann A et al. (2005) Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. J Biol Chem 280: 5318–5328PubMedCrossRefGoogle Scholar
  102. Finazzi G and Forti G (2004) Metabolic flexibility of the green Alga Chlamydomonas reinhardtii as revealed by the link between state transitions and cyclic electron flow. Photosynth Res 82: 327–338PubMedCrossRefGoogle Scholar
  103. Finazzi G, Drapier D and Rappaport F (2009) The CFoF1 ATP-synthase complex of photosynthesis. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 639–670. Elsevier, AmsterdamGoogle Scholar
  104. Finazzi G, Furia A, Barbagallo RP and Forti G (1999) State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta 1413: 117–129PubMedCrossRefGoogle Scholar
  105. Finazzi G, Zito, F, Barbagallo, RP and Wollman FA (2001) Contrasted effects of inhibitors of cytochrome b6f complex on state transitions in Chlamydomonas reinhardtii: the role of Qo site occupancy in LHCII kinase activation. J Biol Chem 276: 9770–9774PubMedCrossRefGoogle Scholar
  106. Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix JD, Zito F and Forti G (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. Embo Reports 3: 280–285PubMedCrossRefGoogle Scholar
  107. Fischer BB, Wiesendanger M and Eggen RI (2006) Growth condition-dependent sensitivity, photodamage and stress response of Chlamydomonas reinhardtii exposed to high light conditions. Plant Cell Physiol 47: 1135–1145PubMedCrossRefGoogle Scholar
  108. Fischer BB, Krieger-Liszkay A, Hideg E, Snyrychova I, Wiesendanger M and Eggen RI (2007) Role of singlet oxygen in chloroplast to nucleus retrograde signaling in Chlamydomonas reinhardtii. FEBS Lett 581: 5555–5560PubMedCrossRefGoogle Scholar
  109. Fischer N, Setif P and Rochaix J-D (1997) Targeted mutations in the psaC gene of Chlamydomonas reinhardtii: Preferential reduction of FB at low temperature is not accompanied by altered electron flow from photosystem I to ferredoxin. Biochem 36: 93–102CrossRefGoogle Scholar
  110. Fischer N, Hippler M, Setif P, Jacquot JP and Rochaix JD (1998) The PsaC subunit of photosystem I provides an essential lysine residue for fast electron transfer to ferredoxin. Embo J 17: 849–858PubMedCrossRefGoogle Scholar
  111. Fowkes ME and Mitchell DR (1998) The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits. Mol Biol Cell 9: 2337–2347PubMedGoogle Scholar
  112. Foyer CH, Noctor G, Buchanan B, Dietz KJ and Pfannschmidt T (2009) Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications. Antioxid Redox Signal 11: 861–905PubMedCrossRefGoogle Scholar
  113. Frank HA and Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63: 257–264PubMedCrossRefGoogle Scholar
  114. Frigerio S, Campoli C, Zorzan S, Fantoni LI, Crosatti C, Drepper F et al (2007) Photosynthetic antenna size in higher plants is controlled by the plastoquinone redox state at the post-transcriptional rather than transcriptional level. J Biol Chem 282: 29457–29469PubMedCrossRefGoogle Scholar
  115. Fu A, He Z, Cho HS., Lima A, Buchanan BB and Luan S (2007) A chloroplast cyclophilin functions in the assembly and maintenance of photosystem II in Arabidopsis thaliana. Proc Natl Acad Sci USA 104: 15947–15952PubMedCrossRefGoogle Scholar
  116. Funes S, Franzen LG and Gonzalez-Halphen D (2007) Chlamydomonas reinhardtii: the model of choice to study mitochondria from unicellular photosynthetic organisms. Methods Mol Biol 372: 137–149PubMedCrossRefGoogle Scholar
  117. Gadjev I, Vanderauwera, S, Gechev, T.S, Laloi C, Minkov IN, Shulaev V et al. (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141: 436–445PubMedCrossRefGoogle Scholar
  118. Garcia-Lorenzo M, Zelisko A, Jackowski G and Funk C (2005) Degradation of the main photosystem II light-harvesting complex. Photochem Photobiol Sci 4: 1065–1071PubMedCrossRefGoogle Scholar
  119. Gau AE, Thole HH, Sokolenko A, Altschmied L, Hermann RG and Pistorius EK (1998) PsbY, a novel manganese-binding, low-molecular-mass protein associated with photosystem II. Mol Gen Genet 260: 56–68PubMedCrossRefGoogle Scholar
  120. Ghassemian M, Lutes J, Tepperman JM, Chang HS, Zhu T, Wang X et al (2006) Integrative analysis of transcript and metabolite profiling data sets to evaluate the regulation of biochemical pathways during photomorphogenesis. Arch Biochem Biophys 448: 45–59PubMedCrossRefGoogle Scholar
  121. Gilmore AM, Hazlett TL and Govindjee (1995) Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime. Proc Natl Acad Sci USA 92: 2273–2277PubMedCrossRefGoogle Scholar
  122. Girard-Bascou J, Choquet U, Gimpel NJ, Culler D, Purton S, Merchant S et al (1995) Nuclear control of the expression of the chloroplast pet genes in Chlamydomonas reinhardtii. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, pp 683–686. Kluwer Academic Publishers, DordrechtGoogle Scholar
  123. Givan AL and Levine RP (1967) The photosynthetic electron transport chain of Chlamydomonas reinhardtii. VII. Photosynthetic phosphorylation by a mutant strain of Chlamydomonas reinhardtii deficient in active P700. Plant Physiol 42: 1264–1268PubMedCrossRefGoogle Scholar
  124. Gokhale X and Sayre RT (2009) Photosystem II, a structural perspective. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 573–602. Elsevier, AmsterdamCrossRefGoogle Scholar
  125. Goldschmidt-Clermont M (2009) Chloroplast RNA splicing. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 915–936. Elsevier, AmsterdamCrossRefGoogle Scholar
  126. Goldschmidt-Clermont M, Rahire M and Rochaix JD (2008) Redundant cis-acting determinants of 3’ processing and RNA stability in the chloroplast rbcL mRNA of Chlamydomonas. Plant J 53: 566–577PubMedCrossRefGoogle Scholar
  127. González-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR (2010) RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 22: 2058–2084Google Scholar
  128. González-Ballester D, Pollock SV, Pootakham W and Grossman AR (2008) The central role of a SNRK2 kinase in sulfur deprivation responses. Plant Physiol 147: 216–227PubMedCrossRefGoogle Scholar
  129. Goodenough U, Lin H and Lee JH (2007) Sex determination in Chlamydomonas. Semin Cell Dev Biol 18: 350–361PubMedCrossRefGoogle Scholar
  130. Goodenough UW (1986) Experimental analysis of the adhesion reaction between isolated Chlamydomonas flagella. Exp Cell Res 166: 237–246PubMedCrossRefGoogle Scholar
  131. Goodenough UW (1992) Green Yeast. Cell 70: 533–538PubMedCrossRefGoogle Scholar
  132. Goodenough UW and Staehelin LA (1971) Structural differentiation of stacked and unstacked chloroplast membranes. Freeze-etch electron microscopy of wild-type and mutant strains of Chlamydomonas. J Cell Biol 48: 594–619PubMedCrossRefGoogle Scholar
  133. Goodenough UW, Armbrust EV, Campbell AM and Ferris PJ (1995) Molecular genetics of sexuality in Chlamydomonas. Annu Rev Plant Physiol Plant Mol Biol 46: 21–44CrossRefGoogle Scholar
  134. Gorman DS and Levine RP (1966) Photosynthetic electron transport chain of Chlamydomonas reinharditi. VI. Electron transport in mutant strains lacking either cytochrome 553 or plastocyanin. Plant Physiol 41: 1648–1656PubMedCrossRefGoogle Scholar
  135. Grossman AR, Bartlett SG and Chua N-H (1980) Energy-dependent uptake of cytoplasmically-synthesized polypeptides by chloroplasts. Nature 285: 625–628CrossRefGoogle Scholar
  136. Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S and Spalding MH (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr Opin Plant Biol 10: 190–198PubMedCrossRefGoogle Scholar
  137. Grossman AR, Harris EE, Hauser C, Lefebvre PA, Martinez D, Rokhsar D et al (2003) Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot Cell 2: 1137–1150PubMedCrossRefGoogle Scholar
  138. Guergova-Kuras M, Boudreaux B, Joliot A, Joliot P and Redding K (2001) Evidence for two active branches for electron transfer in photosystem I. Proc Natl Acad Sci USA 98: 4437–4442PubMedCrossRefGoogle Scholar
  139. Guikema JA and Sherman LA (1983) Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation. Plant Physiol 73: 250–256PubMedCrossRefGoogle Scholar
  140. Guikema JA and Sherman LA (1984) Influence of iron deprivation on the membrane composition of Anacystis nidulans. Plant Physiol 74: 90–95PubMedCrossRefGoogle Scholar
  141. Gumpel NJ, Ralley L, Girard-Bascou J, Wollman FA, Nugent JH and Purton S (1995) Nuclear mutants of Chlamydomonas reinhardtii defective in the biogenesis of the cytochrome b 6       f complex. Plant Mol Biol 29: 921–932PubMedCrossRefGoogle Scholar
  142. Gutman BL and Niyogi KK (2004) Chlamydomonas and Arabidopsis. A dynamic duo. Plant Physiol 135: 607–610PubMedCrossRefGoogle Scholar
  143. Hakala M, Tuominen I, Keranen M, Tyystjarvi T, and Tyystjarvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II. Biochim Biophys Acta 1706: 68–80PubMedCrossRefGoogle Scholar
  144. Hallahan BJ, Purton S, Ivison A, Wright D and Evans MCW (1995) Analysis of the proposed Fe-Sx binding region in Chlamydomonas reinhardtii. Photosyn Res 46: 257–264CrossRefGoogle Scholar
  145. Harris EH (1989) The Chlamydomonas Sourcebook. A Comprehensive Guide to Biology and Laboratory Use. Academic Press, San DiegoGoogle Scholar
  146. Harris EH (2009a) Cell architecture. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 25–64. Elsevier, AmsterdamGoogle Scholar
  147. Harris EH (2009b) The sexual cycle. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 119–158. Elsevier, AmsterdamGoogle Scholar
  148. Hegemann P (1997) Vision in microalgae. Planta 203: 265–274PubMedCrossRefGoogle Scholar
  149. Hegemann P and Berthold P (2009) Sensory photoreceptors and light control of flagellar activity. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 395–430. Elsevier, AmsterdamCrossRefGoogle Scholar
  150. Herrin DL (2009) Chloroplast RNA processing and stability. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 937–966. Elsevier, AmsterdamCrossRefGoogle Scholar
  151. Herrin DL and Nickelsen J (2004) Chloroplast RNA processing and stability. Photosynth Res 82: 301–314PubMedCrossRefGoogle Scholar
  152. Hideg E, Kalai T, Kos PB, Asada K and Hideg K (2006) Singlet oxygen in plants – its significance and possible detection with double (fluorescent and spin) indicator reagents. Photochem Photobiol 82: 1211–1218PubMedCrossRefGoogle Scholar
  153. Higgs D (2009) The chloroplast genome. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 871–892. Elsevier, AmsterdamCrossRefGoogle Scholar
  154. Hippler, M, Drepper F, Haehnel W and Rochaix JD (1998) The N-terminal domain of PsaF: Precise recognition site for binding and fast electron transfer from cytochrome c-6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 95: 7339–7344PubMedCrossRefGoogle Scholar
  155. Holt NE, Fleming GR and Niyogi KK (2004) Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochem 43: 8281–8289CrossRefGoogle Scholar
  156. Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK and Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307: 433–436PubMedCrossRefGoogle Scholar
  157. Horton P and Ruban A (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56: 365–373PubMedCrossRefGoogle Scholar
  158. Howe B and Merchant SS (1992) The biosynthesis of membrane and soluble plastidic c-type cytochromes of Chlamydomonas reinhardtii is dependent on multiple common gene products. Embo J 11: 2789–2801PubMedGoogle Scholar
  159. Howe G and Merchant S (1994) Role of heme in the biosynthesis of cytochrome c 6. J Biol Chem 269: 5824–5832PubMedGoogle Scholar
  160. Im C-S, Eberhard S, Huang K, Beck C and Grossman AR (2006) Phototropin involvement in expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Plant J 48: 1–16PubMedCrossRefGoogle Scholar
  161. Inoue K, Dreyfuss BW, Kindle KL Stern DB, Merchant S and Sodeinde OA (1997) Ccs1, a nuclear gene required for the post-translational assembly of chloroplast c-type cytochromes. J Biol Chem 272: 31747–31754PubMedCrossRefGoogle Scholar
  162. Irihimovitch V and Shapira M (2000) Glutathione redox potential modulated by reactive oxygen species regulates translation of Rubisco large subunit in the chloroplast. J Biol Chem 275: 16289–16295PubMedCrossRefGoogle Scholar
  163. Ishida S, Takabayashi A, Ishikawa N, Hano Y, Endo T and Sato F (2009) A novel nuclear-encoded protein, NDH-dependent cyclic electron flow 5, is essential for the accumulation of chloroplast NAD(P)H dehydrogenase complexes. Plant Cell Physiol 50: 383–393PubMedCrossRefGoogle Scholar
  164. Iwai M, Takahashi Y and Minagawa J (2008) Molecular remodeling of photosystem II during state transitions in Chlamydomonas reinhardtii. Plant Cell 20: 2177–2189PubMedCrossRefGoogle Scholar
  165. Jackowski G, Olkiewicz P and Zelisko A (2003) The acclimative response of the main light harvesting chlorophyll a/b-protein complex of photosystem II (LHCII) to elevated irradiances at the level of trimeric subunits. J Photochem. Photobiol B Biol 70: 163–170CrossRefGoogle Scholar
  166. Jahns P, Latowski, D and Strzalka K (2009) Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim Biophys Acta 1787: 3–14PubMedCrossRefGoogle Scholar
  167. Jain M, Shrager J, Harris EH, Halbrook R, Grossman AR, Hauser C and Vallon O (2007) EST assembly supported by a draft genome sequence: an analysis of the Chlamydomonas reinhardtii transcriptome. Nucleic Acids Res 35: 2074–2083PubMedCrossRefGoogle Scholar
  168. Jansson S, Andersen B and Scheller HV (1996) Nearest-neighbor analysis of higher-plant photosystem I holocomplex. Plant Physiol 112: 409–420PubMedCrossRefGoogle Scholar
  169. Jensen KH, Herrin DL, Plumley FG and Schmidt GW (1986) Biogenesis of photosystem II complexes: transcriptional, translational, and posttranslational regulation. J Cell Biol 103: 1315–1325PubMedCrossRefGoogle Scholar
  170. Jensen PE, Gilpin M, Knoetzel J and Scheller HV (2000) The PSI-K subunit of photosystem I is involved in the interaction between light-harvesting complex I and the photosystem I reaction center core. J Biol Chem 275: 24701–24708PubMedCrossRefGoogle Scholar
  171. Jiao HS, Hicks A, Simpson C and Stern DB (2004) Short dispersed repeats in the Chlamydomonas chloroplast genome are collocated with sites for mRNA 3’ end formation. Curr Genet 45: 311–322PubMedCrossRefGoogle Scholar
  172. Jiao Y, Jia P, Wang X, Su N, Yu S, Zhang D et al. (2005) A tiling microarray expression analysis of rice chromosome 4 suggests a chromosome-level regulation of transcription. Plant Cell 17: 1641–1657PubMedCrossRefGoogle Scholar
  173. Johnson GN (2005) Cyclic electron transport in C3 plants: fact or artefact? J Exp Bot 56: 407–416PubMedCrossRefGoogle Scholar
  174. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  175. Karpowicz SJ, Prochnik SE, Grossman AR and Merchant SS (2011) The GreenCut2 resource: a phyologenomically derived inventory of proteins specific to the plant lineage. J Biol Chem. In Press (Epub ahead of print)Google Scholar
  176. Kapri-Pardes E, Naveh L and Adam Z (2007) The thylakoid lumen protease Deg1 is involved in the repair of photosystem II from photoinhibition in Arabidopsis. Plant Cell 19: 1039–1047PubMedCrossRefGoogle Scholar
  177. Kathir P, LaVoie M, Brazelton WJ, Haas NA, Lefebvre PA and Silflow CD (2003) Molecular Map of the Chlamydomonas reinhardtii Nuclear Genome. Eukaryot Cell 2: 362–379PubMedCrossRefGoogle Scholar
  178. Keller LC, Romijn EP, Zamora I, Yates JR 3 rd and Marshall WF (2005) Proteomic analysis of isolated Chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr Biol 15: 1090–1098PubMedCrossRefGoogle Scholar
  179. Kim J and Mayfield SP (1997) Protein disulfide isomerase as a regulator of chloroplast translational activation. Science 278: 1954–1957PubMedCrossRefGoogle Scholar
  180. Kim J and Mayfield SP (2002) The active site of the thioredoxin-like domain of chloroplast protein disulfide isomerase, RB60, catalyzes the redox-regulated binding of chloroplast poly(A)-binding protein, RB47, to the 5’ untranslated region of psbA mRNA. Plant Cell Physiol 43: 1238–1243PubMedCrossRefGoogle Scholar
  181. King SM and Kamiya R (2009) Axonemal dyneins: Assembly, structure and force generation. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 131–208. Elsevier, AmsterdamCrossRefGoogle Scholar
  182. Klein U (2009) Chloroplast transcription. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 893–914. Elsevier, AmsterdamCrossRefGoogle Scholar
  183. Kohinata T, Nishino H and Fukuzawa H (2008) Significance of zinc in a regulatory protein, CCM1, which regulates the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol 49: 273–283PubMedCrossRefGoogle Scholar
  184. Komayama K, Khatoon M, Takenaka D, Horie J, Yamashita A, Yoshioka M et al (2007) Quality control of Photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids. Biochim Biophys Acta 1767: 838–846PubMedCrossRefGoogle Scholar
  185. Komenda J, Barker M, Kuvikova S, de Vries R, Mullineaux C and Nixon PJ (2006) The FtsH protease Slr0228 is important for quality control of photosystem II in the thylakoid membrane of Synechocystis sp. PCC 6803. J Biol Chem 281: 1145–1151PubMedCrossRefGoogle Scholar
  186. Komenda J, Tichy M, Prasil O, Knoppova J, Kuvikova S, de Vries R and Nixon PJ (2007) The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during photosystem II repair in Synechocystis sp PCC 6803. Plant Cell 19: 2839–2854PubMedCrossRefGoogle Scholar
  187. Kottke T, Hegemann P, Dick B and Heberle J (2006) The photochemistry of the light-, oxygen-, and voltage-sensitive domains in the algal blue light receptor phot. Biopolymers 82: 373–378PubMedCrossRefGoogle Scholar
  188. Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M et al (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316: 715–719PubMedCrossRefGoogle Scholar
  189. Koutoulis A, Pazour GJ, Wilkerson CG, Inaba K, Sheng H, Takada S and Witman GB (1997) The Chlamydomonas reinhardtii ODA3 gene encodes a protein of the outer dynein arm docking complex. J Cell Biol 137: 1069–1080PubMedCrossRefGoogle Scholar
  190. Krieger-Liszkay A, Fufezan C and Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98: 551–564PubMedCrossRefGoogle Scholar
  191. Kropat J, Oster U, Rudiger W and Beck CF (1997) Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Natl Acad Sci USA 94: 14168–14172PubMedCrossRefGoogle Scholar
  192. Kropat J, Oster U, Rudiger W and Beck CF (2000) Chloroplast signalling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J 24: 523–531PubMedCrossRefGoogle Scholar
  193. Kulheim C, Agren J and Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297: 91–93PubMedCrossRefGoogle Scholar
  194. Kuras R and Wollman F-A (1994) The assembly of cytochrome b6f complexes: an approach using genetic transformation of the green alga Chlamydomonas reinhardtii. Embo J 13: 1019–1027PubMedGoogle Scholar
  195. Kuras R, Saint-Marcoux D, Wollman FA and de Vitry C (2007) A specific c-type cytochrome maturation system is required for oxygenic photosynthesis. Proc Natl Acad Sci USA 104: 9906–9910PubMedCrossRefGoogle Scholar
  196. Kuras R, DeVitry C, Choquet Y, Girard-Bascou J, Culler D, Buschlen S et al (1997) Molecular genetic identification of a pathway for heme binding to cytochrome b6. J Biol Chem 272: 32427–32435PubMedCrossRefGoogle Scholar
  197. Kurvari V (1997) Cell wall biogenesis in Chlamydomonas: molecular characterization of a novel protein whose expression is up-regulated during matrix formation. Mol Gen Genet 256: 572–580PubMedCrossRefGoogle Scholar
  198. Kuttkat A, Edhofer I, Eichacker LA and Paulsen H (1997) Light-harvesting chlorophyll a/b-binding protein stably inserts into etioplast membranes supplemented with Zn-pheophytin a/b. J Biol Chem 272: 20451–20455PubMedCrossRefGoogle Scholar
  199. Laloi C, Przybyla D and Apel K (2006) A genetic approach towards elucidating the biological activity of different reactive oxygen species in Arabidopsis thaliana. J Exp Bot 57: 1719–1724PubMedCrossRefGoogle Scholar
  200. Lamb MR Dutcher SK, Worley CK and Dieckmann CL (1999) Eyespot-assembly mutants in Chlamydomonas reinhardtii. Genetics 153: 721–729PubMedGoogle Scholar
  201. Larbi A, Abadia A, Abadia J and Morales F (2006) Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynth Res 89: 113–126PubMedCrossRefGoogle Scholar
  202. Larkin RM and Ruckle ME (2008) Integration of light and plastid signals. Curr Opin Plant Biol 11: 593–599PubMedCrossRefGoogle Scholar
  203. Lavorel J and Levine RP (1968) Fluorescence properties of wild-type Chlamydomonas reinhardtii and three mutant strains having impaired photosynthesis. Plant Physiol 43: 1049–1055PubMedCrossRefGoogle Scholar
  204. Lawlor DW (2009) Musings about the effects of environment on photosynthesis. Ann Bot (Lond) 103: 543–549CrossRefGoogle Scholar
  205. Lax JE, Arteni AA, Boekema EJ, Pistorius EK, Michel KP and Rögner M (2007) Structural response of Photosystem 2 to iron deficiency: characterization of a new photosystem 2-IdiA complex from the cyanobacterium Thermosynechococcus elongatus BP-1. Biochim Biophys Acta 1767: 528–534PubMedCrossRefGoogle Scholar
  206. Ledford HK, Chin BL and Niyogi KK (2007) Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryot Cell 6: 919–930PubMedCrossRefGoogle Scholar
  207. Ledford HK, Baroli I, Shin JW, Fischer BB, Eggen RI and Niyogi KK (2004) Comparative profiling of lipid-soluble antioxidants and transcripts reveals two phases of photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas reinhardtii. Mol Genet Genomics 272: 470–479PubMedCrossRefGoogle Scholar
  208. Lee KP, Kim C, Landgraf F and Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci USA 104: 10270–10275PubMedCrossRefGoogle Scholar
  209. Lefebvre PA (1995) Flagellar amputation and regeneration in Chlamydomonas. Methods Cell Biol 47: 3–7PubMedCrossRefGoogle Scholar
  210. Lefebvre PA (2009) Flagellar length control. In The Chlamydomonas Sourcebook. Harris EH, Stern D and Witman GB (eds). Amsterdam: Elsevier, pp. 115–130CrossRefGoogle Scholar
  211. Leister D (2005) Genomics-based dissection of the cross-talk of chloroplasts with the nucleus and mitochondria in Arabidopsis. Gene 354: 110–116PubMedCrossRefGoogle Scholar
  212. Lemaire C, Girard-Bascou J and Wollman F-A (1986a) Characterization of the b 6       f complex subunits and studies on the LHC-Kinase in Chlamydomonas reinhardtii using mutant strains altered in the b 6 /f complex. In: Biggins J (ed) Progress in Photosynthesis Research, pp 655–658. Nijhoff, DordrechtGoogle Scholar
  213. Lemaire C, Girard-Bascou J, Wollman F-A and Bennoun P (1986b) Studies on the cytochrome b 6      f complex. I. Characterization of the complex subunits in Chlamydomonas reinhardtii. Biochim Biophys Acta 851: 229–238CrossRefGoogle Scholar
  214. Leon-Banares R, Gonzalez-Ballester D, Galvan A and Fernandez, E. (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22: 45–52PubMedCrossRefGoogle Scholar
  215. Leonhardt K and Straus NA (1994) Photosystem II genes isiA, psbDI and psbC in Anabaena sp. PCC 7120: cloning, sequencing and the transcriptional regulation in iron-stressed and iron-repleted cells. Plant Mol Biol 24: 63–73PubMedCrossRefGoogle Scholar
  216. Lepisto A, Kangasjarvi S, Luomala EM, Brader G, Sipari N, Keranen M et al (2009) Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiol 149: 1261–1276PubMedCrossRefGoogle Scholar
  217. Levine RP (1960) A screening technique for photosynthetic mutants in unicellular algae. Nature 188: 339–340PubMedCrossRefGoogle Scholar
  218. Levine RP (1969) The analysis of photosynthesis using mutant strains of algae and higher plants. Annu Rev Plant Physiol 20: 523–540CrossRefGoogle Scholar
  219. Levine RP and Goodenough UW (1970) The genetics of photosynthesis and of the chloroplast in Chlamydomonas reinhardii. Annu Rev Genetics 4: 397–408CrossRefGoogle Scholar
  220. Lezhneva L, Kuras R, Ephritikhine G and de Vitry C (2008) A novel pathway of cytochrome c biogenesis is involved in the assembly of the cytochrome b6      f complex in Arabidopsis chloroplasts. J Biol Chem 283: 24608–24616PubMedCrossRefGoogle Scholar
  221. Li XP, Bjorkman O, Shih C, Grossman A, Rosenquist M, Jansson C and Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403: 391–395PubMedCrossRefGoogle Scholar
  222. Li XP, Gilmore AM and Niyogi KK (2002a) Mole­cular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent nonphotochemical quenching in photosystem II. J Biol Chem 277: 33590–33597PubMedCrossRefGoogle Scholar
  223. Li XP, Muller-Moule P, Gilmore AM and Niyogi KK (2002b) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci USA 99: 15222–15227PubMedCrossRefGoogle Scholar
  224. Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D and Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279: 22866–22874PubMedCrossRefGoogle Scholar
  225. Li Y, van der Est A, Lucas MG, Ramesh VM, Gu F, Petrenko A et al (2006) Directing electron transfer within Photosystem I by breaking H-bonds in the cofactor branches. Proc Natl Acad Sci USA 103: 2144–2149PubMedCrossRefGoogle Scholar
  226. Li Z, Wakao S, Fischer BB and Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol. 60: 239–260PubMedCrossRefGoogle Scholar
  227. Lohr M (2009) Carotenoids. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 799–818. Elsevier, AmsterdamCrossRefGoogle Scholar
  228. Lohr M, Im CS and Grossman AR (2005) Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 138: 490–515PubMedCrossRefGoogle Scholar
  229. Loiselay C, Gumpel NJ, Girard-Bascou J, Watson AT, Purton S, Wollman FA and Choquet Y (2008) Molecular identification and function of cis- and trans-acting determinants for petA transcript stability in Chlamydomonas reinhardtii chloroplasts. Mol Cell Biol 28: 5529–5542PubMedCrossRefGoogle Scholar
  230. Long JC, Sommer F, Allen MD, Lu SF and Merchant SS (2008) FER1 and FER2 encoding two ferritin complexes in Chlamydomonas reinhardtii chloroplasts are regulated by iron. Genetics 179: 137–147PubMedCrossRefGoogle Scholar
  231. Lunde C, Jensen PE, Haldrup A, Knoetzel J and Scheller HV (2000) The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408: 613–615PubMedCrossRefGoogle Scholar
  232. Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H and Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13: 2589–2607PubMedGoogle Scholar
  233. Maheswari U, Mock T, Armbrust EV and Bowler C (2009) Update of the Diatom EST Database: a new tool for digital transcriptomics. Nucleic Acids Res 37: D1001–1005PubMedCrossRefGoogle Scholar
  234. Martin M, Funk HT, Serrot PH, Poltnigg P and Sabater B (2009) Functional characterization of the thylakoid Ndh complex phosphorylation by site-directed mutations in the ndhF gene. Biochim Biophys Acta 1787: 920–928Google Scholar
  235. Matsuzaki M, Misumi O, Shin IT, Maruyama S, Takahara M, Miyagishima SY et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428: 653–657PubMedCrossRefGoogle Scholar
  236. Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris EH and Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14: 2659–2679PubMedCrossRefGoogle Scholar
  237. May P, Wienkoop S, Kempa S, Usadel B, Christian N, Rupprecht J et al (2008) Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii. Genetics 179: 157–166PubMedCrossRefGoogle Scholar
  238. May P, Christian JO, Kempa S and Walther D (2009) ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii. BMC Genomics 10: 209PubMedCrossRefGoogle Scholar
  239. Mayfield S (1996) Double agent: Translational regulation by a transcription factor. Chem Biol (London) 3: 415–418Google Scholar
  240. McKim SM and Durnford DG (2006) Translational regulation of light-harvesting complex expression during photoacclimation to high-light in Chlamydomonas reinhardtii. Plant Physiol Biochem 44: 857–865PubMedCrossRefGoogle Scholar
  241. Melkozernov AN, Kargul J, Lin S, Barber J and Blankenship RE (2005) Spectral and kinetic analysis of the energy coupling in the PS I-LHC I supercomplex from the green alga Chlamydomonas reinhardtii at 77 K. Photosynth Res 86: 203–215PubMedCrossRefGoogle Scholar
  242. Melkozernov AN, Su H, Lin S, Bingham S, Webber AN and Blankenship RE (1997) Specific mutations near the primary donor in Photosystem I from Chlamydomonas reinhardtii alters the trapping time and spectroscopic properties of P700. Biochemistry 36: 2898–2907PubMedCrossRefGoogle Scholar
  243. Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC, Tottey S and Terauchi AM (2006) Between a rock and a hard place: trace element nutrition in Chlamydomonas. Biochim Biophys Acta 1767: 578–594CrossRefGoogle Scholar
  244. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245–250PubMedCrossRefGoogle Scholar
  245. Merendino L, Perron K, Rahire M, Howald I, Rochaix JD and Goldschmidt-Clermont M. (2006) A novel multifunctional factor involved in trans-splicing of chloroplast introns in Chlamydomonas. Nucleic Acids Res 34: 262–274PubMedCrossRefGoogle Scholar
  246. Meskauskiene R, Nater M, Goslings D, Kessler F op den Camp R and Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98: 12826–12831PubMedCrossRefGoogle Scholar
  247. Mets L and Bogorad L (1971) Mendelian and uniparental alterations in erythromycin binding by plastid ribosomes. Science 174: 707–709PubMedCrossRefGoogle Scholar
  248. Michel H and Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. Biochem 27: 1–7CrossRefGoogle Scholar
  249. Michel KP and Pistorius EK (2004) Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: The function of IdiA and IsiA. Physiol Plant 120: 36–50PubMedCrossRefGoogle Scholar
  250. Michelet L, Zaffagnini M and Lemaire SD (2009) Thioredoxins and related proteins. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 401–444. Elsevier, AmsterdamCrossRefGoogle Scholar
  251. Minagawa J (2009) Light-harvesting proteins. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 503–540. Elsevier, AmsterdamCrossRefGoogle Scholar
  252. Misumi O, Matsuzaki M, Nozaki H, Miyagishima SY, Mori T, Nishida K et al (2005) Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. Plant Physiol 137: 567–585PubMedCrossRefGoogle Scholar
  253. Mittler R, Vanderauwera S, Gollery M and Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9: 490–498PubMedCrossRefGoogle Scholar
  254. Mochizuki N, Tanaka R, Tanaka A, Masuda T and Nagatani A (2008) The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci USA 105: 15184–15189PubMedCrossRefGoogle Scholar
  255. Moll B and Levine RP (1970) Characterization of a photosynthetic mutant strain of Chlamydomonas reinhardi deficient in phosphoribulokinase activity. Plant Physiol 46: 576–580PubMedCrossRefGoogle Scholar
  256. Moller IM, Jensen PE and Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58: 459–481PubMedCrossRefGoogle Scholar
  257. Molnar A, Schwach F, Studholme DJ, Thuenemann EC and Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447: 1126–1129PubMedCrossRefGoogle Scholar
  258. Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S et al (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58: 165–174Google Scholar
  259. Moseley J and Grossman AR (2009) Phosphorus limitation from the physiological to the genomic. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 189–216. Elsevier, AmsterdamGoogle Scholar
  260. Moseley J, Quinn J, Eriksson M and Merchant SS (2000) The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. EMBO J 19: 2139–2151CrossRefGoogle Scholar
  261. Moseley J, Gonzalez-Ballester D, Pootakham W, Bailey S and Grossman AR (2009) Genetic interactions between regulators of Chlamydomonas phosphorus and sulfur deprivation responses. Genetics 181: 889–905PubMedCrossRefGoogle Scholar
  262. Moseley JL, Chang CW and Grossman AR (2006) Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryot Cell 5: 26–44PubMedCrossRefGoogle Scholar
  263. Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S and Hippler M (2002) Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. Embo J 21: 6709–6720PubMedCrossRefGoogle Scholar
  264. Moulin M, McCormac AC, Terry MJ and Smith AG (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc Natl Acad Sci USA 105: 15178–15183PubMedCrossRefGoogle Scholar
  265. Mozzo M, Passarini F, Bassi R, van Amerongen H and Croce R (2008) Photoprotection in higher plants: the putative quenching site is conserved in all outer light-harvesting complexes of Photosystem II. Biochim Biophys Acta 1777: 1263–1267PubMedCrossRefGoogle Scholar
  266. Muhlenbock P, Szechynska-Hebda M, Plaszczyca M, Baudo M, Mateo A, Mullineaux PM et al (2008) Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. Plant Cell 20: 2339–2356PubMedCrossRefGoogle Scholar
  267. Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI et al (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103: 13126–13131PubMedCrossRefGoogle Scholar
  268. Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M and Shikanai, T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429: 579–582PubMedCrossRefGoogle Scholar
  269. Murata N (1969) Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 172: 242–251PubMedCrossRefGoogle Scholar
  270. Murray JW, Duncan, J and Barber J (2006) CP43-like chlorophyll binding proteins: structural and evolutionary implications. Trends Plant Sci 11: 152–158PubMedCrossRefGoogle Scholar
  271. Mus F, Dubini A, Seibert M, Posewitz MC and Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282: 25475–25486PubMedCrossRefGoogle Scholar
  272. Mussgnug JH, Wobbe L, Elles I, Claus C, Hamilton M, Fink A et al (2005) NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell 17: 3409–3421PubMedCrossRefGoogle Scholar
  273. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M and Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320: 1344–1349PubMedCrossRefGoogle Scholar
  274. Nandha B, Finazzi G, Joliot P, Hald S and Johnson GN (2007) The role of PGR5 in the redox poising of photosynthetic electron transport. Biochim Biophys Acta 1767: 1252–1259PubMedCrossRefGoogle Scholar
  275. Naumann B, Stauber EJ, Busch A, Sommer F and Hippler M (2005) N-terminal processing of Lhca3 Is a key step in remodeling of the photosystem I-light-harvesting complex under iron deficiency in Chlamydomonas reinhardtii. J Biol Chem 280: 20431–20441PubMedCrossRefGoogle Scholar
  276. Naumann B, Busch A, Allmer J, Ostendorf E, Zeller M, Kirchhoff H and Hippler M (2007) Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii. Proteomics 7: 3964–3979PubMedCrossRefGoogle Scholar
  277. Nelson N and Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57: 521–565PubMedCrossRefGoogle Scholar
  278. Nguyen AV, Thomas-Hall SR, Malnoe A, Timmins M, Mussgnug JH, Rupprecht J et al (2008) The transcriptome of photo-biological hydrogen production induced by sulphur deprivation in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 7: 1965–1979PubMedCrossRefGoogle Scholar
  279. Nield J, Morris EP, Bibby TS and Barber J (2003) Structural analysis of the photosystem I supercomplex of cyanobacteria induced by iron deficiency. Biochem 42: 3180–3188CrossRefGoogle Scholar
  280. Nield J, Kruse O, Ruprecht J, da Fonseca P, Buchel C and Barber J (2000) Three-dimensional structure of Chlamydomonas reinhardtii and Synechococcus elongatus photosystem II complexes allows for comparison of their oxygen-evolving complex organization. J Biol Chem 275: 27940–27946PubMedGoogle Scholar
  281. Nilsson A, Stys D, Drakenberg T, Spangfort MD, Forsen S and Allen JF (1997) Phosphorylation controls the three-dimensional structure of plant light harvesting complex II. J Biol Chem 272: 18350–18357PubMedCrossRefGoogle Scholar
  282. Nishiyama Y, Allakhverdiev SI and Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757: 742–749PubMedCrossRefGoogle Scholar
  283. Niyogi K (2009) Photoprotection and high light responses. In: Harris EH, Stern D and Witman GB (eds) The Chlamy­domonas Sourcebook, pp 847–870. Elsevier, AmsterdamCrossRefGoogle Scholar
  284. Niyogi KK, Björkrman O and Grossman AR (1997) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9: 1369–1380PubMedGoogle Scholar
  285. Niyogi KK (1999) Photoprotection revisited: Genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50: 333–359PubMedCrossRefGoogle Scholar
  286. Niyogi KK, Grossman AR and Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10: 1121–1134PubMedGoogle Scholar
  287. Niyogi KK, Li XP, Rosenberg V and Jung HS (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56: 375–382PubMedCrossRefGoogle Scholar
  288. Nott A, Jung HS, Koussevitzky S and Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57: 739–759PubMedCrossRefGoogle Scholar
  289. Oelze ML, Kandlbinder A and Dietz KJ (2008) Redox regulation and overreduction control in the photosynthesizing cell: complexity in redox regulatory networks. Biochim Biophys Acta 1780: 1261–1272PubMedCrossRefGoogle Scholar
  290. Ohad I, Kyle DJ and Arntzen CJ (1984) Membrane protein damage and repair: removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. J Cell Biol 99: 481–485PubMedCrossRefGoogle Scholar
  291. Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y, Murata N (2005) Two-step mechanism of photodamage to photosystem II: Step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochem 44: 8494–8499CrossRefGoogle Scholar
  292. Ooyabu J, Ohtsuka M, Kashino Y, Koike H and Satoh K (2008) The expression pattern of NAD(P)H oxidases and the cyclic electron transport pathway around photosystem I of Synechocystis sp. PCC6803 depend on growth conditions. Biosci Biotechnol Biochem 72: 3180–3188PubMedCrossRefGoogle Scholar
  293. Osmond B and Forster B (2006) Photoprotection, photoinhibition, gene regulation and environment. In: Demmig-Adams B, Adams III WW and Mattoo AK (eds) Photoinhibition: Then and Now, pp 11–22. Springer, DordrechtGoogle Scholar
  294. Pakrasi HB, Goldenberg A and Sherman LA (1985) Membrane development in the cyanobacterium, Anacystis nidulans, during recovery from iron starvation. Plant Physiol 79: 290–295PubMedCrossRefGoogle Scholar
  295. Palenik B, Grimwood J, Aerts A, Rouze P, Salamov A, Putnam N et al (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104: 7705–7710PubMedCrossRefGoogle Scholar
  296. Pazour G and Witman GB (2009) The Chlamydomonas ­flagellum as a model for human ciliary disease. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 445–478. Elsevier, AmsterdamCrossRefGoogle Scholar
  297. Pazour GJ, Sineshchekov OA and Witman GB (1995) Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii. J Cell Biol 131: 427–440PubMedCrossRefGoogle Scholar
  298. Peers G, Truong TB, Ostendorf E, Elrad D, Grossman AR, Hippler M and Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462: 518–21PubMedCrossRefGoogle Scholar
  299. Peltier G and Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53: 523–550PubMedCrossRefGoogle Scholar
  300. Perret MC, Bernd K.K and Kohorn BD (1998) Chloroplast protein translocation. In: Rochaix J-D, Goldschmidt-Clermont M and Merchant S (eds) Molecular Biology of Chlamydomonas: Chloroplasts and Mitochondria, pp 219–231. Kluwer Academic Publishers, DordrechtGoogle Scholar
  301. Pesaresi P, Schneider A, Kleine T and Leister D (2007) Interorganellar communication. Curr Opin Plant Biol 10: 600–606PubMedCrossRefGoogle Scholar
  302. Pfundel EE and Dilley RA (1993) The pH dependence of violaxanthin deepoxidation in isolated pea chloroplasts. Plant Physiol 101: 65–71PubMedGoogle Scholar
  303. Pilon M, Abdel-Ghany SE, Van Hoewyk D, Ye, H and Pilon-Smits EA (2006) Biogenesis of iron-sulfur cluster proteins in plastids. Genet Eng (N Y) 27: 101–117CrossRefGoogle Scholar
  304. Pogson BJ and Rissler, HM (2000) Genetic manipulation of carotenoid biosynthesis and photoprotection. Philos Trans R Soc Lond B Biol Sci 355: 1395–1403PubMedCrossRefGoogle Scholar
  305. Pogson BJ, Woo NS, Forster B and Small ID (2008) Plastid signalling to the nucleus and beyond. Trends Plant Sci 13: 602–609PubMedCrossRefGoogle Scholar
  306. Polivka T, HerekJL, Zigmantas D, Akerland HE and Sundstrom V (1999) Direct observation of the (forbidden) S1 state in carotenoids. Proc Natl Acad Sci USA 96: 4914–4917PubMedCrossRefGoogle Scholar
  307. Posewitz M, Dubini A, Meuser JE, Seibert M and Ghirardi ML (2009) Hydrogenase, hydrogen production and anoxia. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 218–256. Elsevier, AmsterdamGoogle Scholar
  308. Puthiyaveetil S and Allen JF (2009) Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression. Proc Biol Sci 276: 2133–2145PubMedCrossRefGoogle Scholar
  309. Puthiyaveetil S, Kavanagh TA, Cain P, Sullivan JA, Newell CA, Gray JC et al (2008) The ancestral symbiont sensor kinase CSK links photosynthesis with gene expression in chloroplasts. Proc Natl Acad Sci USA 105: 10061–10066PubMedCrossRefGoogle Scholar
  310. Raynaud C, Loiselay C, Wostrikoff K, Kuras R, Girard-Bascou J, Wollman FA and Choquet Y (2007) Evidence for regulatory function of nucleus-encoded factors on mRNA stabilization and translation in the chloroplast. Proc Natl Acad Sci USA 104: 9093–9098PubMedCrossRefGoogle Scholar
  311. Redding K (2009) Photosystem I. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 541–572. Elsevier, AmsterdamCrossRefGoogle Scholar
  312. Reikhof WR and Benning C (2009) Glycerolipid biosynthesis. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 41–68. Elsevier, AmsterdamCrossRefGoogle Scholar
  313. Reinbothe C, Pollmann S, Phetsarath-Faure P, Quigley F, Weisbeek P and Reinbothe S (2008) A pentapeptide motif related to a pigment binding site in the major light-harvesting protein of photosystem II, LHCII, governs substrate-dependent plastid import of NADPH:protochlorophyllide oxidoreductase A. Plant Physiol 148: 694–703PubMedCrossRefGoogle Scholar
  314. Reinbothe C, Bartsch S, Eggink LL Hoober JK, Brusslan J, Andrade-Paz R et al (2006) A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc Natl Acad Sci USA 103: 4777–4782PubMedCrossRefGoogle Scholar
  315. Riano-Pachon DM, Correa LG, Trejos-Espinosa R and Mueller-Roeber B (2008) Green transcription factors: a Chlamydomonas overview. Genetics 179: 31–39PubMedCrossRefGoogle Scholar
  316. Richard C, Ouellet H and Guertin M (2000) Characterization of the LI818 polypeptide from the green unicellular alga Chlamydomonas reinhardtii. Plant Mol Biol 42: 303–316PubMedCrossRefGoogle Scholar
  317. Rizhsky L, Liang H and Mittler R (2003) The water-water cycle is essential for chloroplast protection in the absence of stress. J Biol Chem 278: 38921–38925PubMedCrossRefGoogle Scholar
  318. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA et al (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424: 1042–1047PubMedCrossRefGoogle Scholar
  319. Rochaix J-D (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genetics 29: 209–230CrossRefGoogle Scholar
  320. Rochaix J-D (1996) Post-transcriptional regulation of chloroplast gene expression in Chlamydomonas. Plant Mol Biol 32: 327–341PubMedCrossRefGoogle Scholar
  321. Rochaix J-D (2009) State transitions. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 819–846. Elsevier, AmsterdamCrossRefGoogle Scholar
  322. Rochaix J-D and Malnoe P (1978) Anatomy of the chloroplast ribosomal DNA of Chlamydomonas reinhardtii. Cell 15: 661–670PubMedCrossRefGoogle Scholar
  323. Rochaix J-D and Darlix J-L (1982) Composite structure of the chloroplast 23 S ribosomal RNA genes of Chlamydomonas reinhardtii. Evolutionary and functional implications. J Mol Biol 159: 383–395PubMedCrossRefGoogle Scholar
  324. Rochaix JD (2001) Posttranscriptional control of chloroplast gene expression. From RNA to photosynthetic complex. Plant Physiol 125: 142–144PubMedCrossRefGoogle Scholar
  325. Rochaix JD (2002) Chlamydomonas, a model system for studying the assembly and dynamics of photosynthetic complexes. FEBS Lett 529: 34–38PubMedCrossRefGoogle Scholar
  326. Rochaix JD (2004) Genetics of the biogenesis and dynamics of the photosynthetic machinery in eukaryotes. Plant Cell 16: 1650–1660PubMedCrossRefGoogle Scholar
  327. Rochaix JD (2007) Role of thylakoid protein kinases in photosynthetic acclimation. FEBS Lett 581: 2768–2775PubMedCrossRefGoogle Scholar
  328. Rochaix JD, Perron K, Dauvillee D, Laroche F, Takahashi Y and Goldschmidt-Clermont M (2004) Post-transcriptional steps involved in the assembly of photosystem I in Chlamydomonas. Biochem Soc Trans 32: 567–570PubMedCrossRefGoogle Scholar
  329. Rodday SM, Webber AN, Bingham SE and Biggins J (1995) Evidence that the FX domain in Photosystem I interacts with the subunit PsaC: Site-directed changes in PsaB destabilize the subunit interactions in Chlamydomonas reinhardtii. Biochem 34: 6328–6334CrossRefGoogle Scholar
  330. Rodday SM, Do LT, Chynwat V, Frank H and Biggins J (1996) Site-directed mutagenesis of the subunit PsaC establishes a surface exposed domain interacting with the Photosystem I core binding site. Biochem 35: 11832–11838CrossRefGoogle Scholar
  331. Rohr J, Sarkar N, Balenger S, Jeong BR and Cerutti H (2004) Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J 40: 611–621PubMedCrossRefGoogle Scholar
  332. Rolland N, Atteia A, Decottignies P, Garin J, Hippler M, Kreimer G et al (2009) Chlamydomonas proteomics. Curr Opin Microbiol. 12: 285–291PubMedCrossRefGoogle Scholar
  333. Ruban AV, Berera R, Ilioaia C, van Stokkum IH, Kennis JT, Pascal AA et al (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450: 575–578PubMedCrossRefGoogle Scholar
  334. Ruckle ME, DeMarco SM and Larkin RM (2007) Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis. Plant Cell 19: 3944–3960PubMedCrossRefGoogle Scholar
  335. Rumeau D, Peltier G and Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30: 1041–1051PubMedCrossRefGoogle Scholar
  336. Rymarquis LA, Higgs DC and Stern DB (2006) Nuclear suppressors define three factors that participate in both 5’ and 3’ end processing of mRNAs in Chlamydomonas chloroplasts. Plant J 46: 448–461PubMedCrossRefGoogle Scholar
  337. Rymarquis LA, Webster BR and Stern DB (2007) The nucleus-encoded factor MCD4 participates in degradation of nonfunctional 3’ UTR sequences generated by cleavage of pre-mRNA in Chlamydomonas chloroplasts. Mol Genet Genomics 277: 329–340PubMedCrossRefGoogle Scholar
  338. Rymarquis LA, Handley JM, Thomas M and Stern DB (2005) Beyond complementation. Map-based cloning in Chlamydomonas reinhardtii. Plant Physiol 137: 557–566PubMedCrossRefGoogle Scholar
  339. Sager R (1960) Genetic systems in Chlamydomonas. Science 132: 1459–1465PubMedCrossRefGoogle Scholar
  340. Sakamoto W (2006) Protein degradation machineries in plastids. Annu Rev Plant Biol 57: 599–621PubMedCrossRefGoogle Scholar
  341. Sandstrom S, Ivanov AG, Park YI, Oquist G and Gustafsson P (2002) Iron stress responses in the cyanobacterium Synechococcus sp. PCC7942. Physiol Plant 116: 255–263PubMedCrossRefGoogle Scholar
  342. Sato V, Levine RP and Neumann J (1971) Photosynthetic phosphorylation in Chlamydomonas reinhardti. Effects of a mutation altering an ATP-synthesizing enzyme. Biochim Biophys Acta 253: 437–448PubMedCrossRefGoogle Scholar
  343. Savard F, Richard C and Guertin M (1996) The Chlamydomonas reinhardtii LI818 gene represents a distant relative of the cabI\II genes that is regulated during the cell cycle and in response to illumination. Plant Mol Biol 32: 461–473PubMedCrossRefGoogle Scholar
  344. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, et al (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37: 501–506PubMedCrossRefGoogle Scholar
  345. Schmidt GW and Mishkind ML (1986) The transport of proteins into chloroplasts. Annu Rev Biochem 55: 879–912PubMedCrossRefGoogle Scholar
  346. Schmidt GW, Devillers-Thiery A, Desruisseaux H, Blobel G and Chua N-H (1979) NH2 -terminal amino acid sequence of precursor and mature forms of the ribulose-1,5-bisphosphate carboxylase small subunit from Chlamydomonas reinhardtii. J Cell Biol 83: 615–622PubMedCrossRefGoogle Scholar
  347. Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M et al (2006) Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell 18: 1908–1930PubMedCrossRefGoogle Scholar
  348. Scholey JM (2008) Intraflagellar transport motors in cilia: moving along the cell’s antenna. J Cell Biol 180: 23–29PubMedCrossRefGoogle Scholar
  349. Scholey JM and Anderson KV (2006) Intraflagellar transport and cilium-based signaling. Cell 125: 439–442PubMedCrossRefGoogle Scholar
  350. Schroda M (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 49: 69–84PubMedCrossRefGoogle Scholar
  351. Schwarz C, Elles I, Kortmann J, Piotrowski M and Nickelsen J (2007) Synthesis of the D2 protein of photosystem II in Chlamydomonas is controlled by a high molecular mass complex containing the RNA stabilization factor Nac2 and the translational activator RBP40. Plant Cell 19: 3627–3639PubMedCrossRefGoogle Scholar
  352. Shao N, Beck CF, Lemaire SD and Krieger-Liszkay A (2008) Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii. Planta 228: 1055–1066PubMedCrossRefGoogle Scholar
  353. Shao N, Vallon O, Dent R, Niyogi KK and Beck CF (2006) Defects in the cytochrome b6/f complex prevent light-induced expression of nuclear genes involved in chlorophyll biosynthesis. Plant Physiol 141: 1128–1137PubMedCrossRefGoogle Scholar
  354. Sharma S (2007) Adaptation of photosynthesis under iron deficiency in maize. J Plant Physiol 164: 1261–1267PubMedCrossRefGoogle Scholar
  355. Shepherd HS, Boynton JE and Gillham NW (1979) Mutations in nine chloroplast loci of Chlamydomonas affecting different photosynthetic functions. Proc Nat Acad Sci USA 76: 1353–1357PubMedCrossRefGoogle Scholar
  356. Shikanai T (2007) Cyclic electron transport around photosystem I: Genetic approaches. Annu Rev Plant Biol 58: 199–217PubMedCrossRefGoogle Scholar
  357. Shimizu H and Shikanai T (2007) Dihydrodipicolinate reductase-like protein, CRR1, is essential for chloroplast NAD(P)H dehydrogenase in Arabidopsis. Plant J 52: 539–547PubMedCrossRefGoogle Scholar
  358. Shimizu H, Peng L, Myouga F, Motohashi R, Shinozaki K and Shikanai T (2008) CRR23/NdhL is a subunit of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Cell Physiol 49: 835–842PubMedCrossRefGoogle Scholar
  359. Shrager J, Hauser C, Chang CW, Harris EH Davies J, McDermott J et al (2003) Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiol 131: 401–408PubMedCrossRefGoogle Scholar
  360. Sineshchekov OA, Govorunova EG and Spudich JL (2009) Photosensory functions of channelrhodopsins in native algal cells. Photochem Photobiol 85: 556–563PubMedCrossRefGoogle Scholar
  361. Sizova I, Fuhrmann M and Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277: 221–229PubMedCrossRefGoogle Scholar
  362. Smith T and Kohorn BD (1994) Mutations in a signal sequence for the thylakoid membrane identify multiple protein transport pathways and nuclear suppressors. J Cell Biol 126: 365–374PubMedCrossRefGoogle Scholar
  363. Spreitzer RJ and Mets LJ (1980) Non-mendelian mutation affecting ribulose-1,5- biosphosphate carboxylase/oxygenase. Nature 285: 114–115CrossRefGoogle Scholar
  364. Stauber EJ and Hippler M (2004) Chlamydomonas reinhardtii proteomics. Plant Physiol Biochem 42: 989–1001PubMedCrossRefGoogle Scholar
  365. Stauber EJ, Busch A, Naumann B, Svatos A and Hippler M (2009) Proteotypic profiling of LHCI from Chlamydomonas reinhardtii provides new insights into structure and function of the complex. Proteomics 9: 398–408PubMedCrossRefGoogle Scholar
  366. Stern DB and Drager RG (1998) Chloroplast RNA synthesis and processing. In: Rochaix J-D, Goldschmidt-Clermont M and Merchant S (eds) Molecular Biology of Chlamydomonas: Chloroplasts and Mitochondria, pp 165–183. Kluwer Academic Publishers, DordrechtGoogle Scholar
  367. Stern DB, Higgs DC and Yang J (1997) Transcriptional and translational activities of chloroplasts. Trends Plant Sci 2: 308–315CrossRefGoogle Scholar
  368. Stevens DR, Rochaix, J-D and Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genetics 251: 23–30Google Scholar
  369. Strzepek RF and Harrison PJ (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431: 689–692PubMedCrossRefGoogle Scholar
  370. Subramanyam R, Jolley C, Brune DC, Fromme P and Webber AN (2006) Characterization of a novel Photosystem I-LHCI supercomplex isolated from Chlamydomonas reinhardtii under anaerobic (State II) conditions. FEBS Lett 580: 233–238PubMedCrossRefGoogle Scholar
  371. Surzycki SJ and Rochaix J-D (1971) Transcriptional mapping of ribosomal RNA genes of the chloroplast and nucleus of Chlamydomonas reinhardtii. J Mol Biol 62: 89–109PubMedCrossRefGoogle Scholar
  372. Swiatek M, Kuras R, Sokolenko A, Higgs D, Olive J, Cinque G et al (2001) The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular structure. Plant Cell 13: 1347–1367PubMedGoogle Scholar
  373. Szabo I, Bergantino E and Giacometti GM (2005) Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. Embo Rep 6: 629–634PubMedCrossRefGoogle Scholar
  374. Takahashi S and Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13: 178–182PubMedCrossRefGoogle Scholar
  375. Takahashi S, Milward SE, Fan DY, Chow WS and Badger, MR (2009) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol 149: 1560–1567PubMedCrossRefGoogle Scholar
  376. Takahashi YM, Goldschmidt-Clermont M and Rochaix J-D (1992) Directed mutagenesis of the chloroplast gene psaC in Chlamydomonas reinhardtii. In: Murata N (ed) Research in Photosynthesis, Vol III, pp 393–396. Kluwer Academic Publishers, DordrechtGoogle Scholar
  377. Tejada-Jimenez M, Llamas A, Sanz-Luque E, Galván, A and Fernández E (2007) A high-affinity molybdate transporter in eukaryotes. Proc Natl Acad Sci USA 104: 20126–20130PubMedCrossRefGoogle Scholar
  378. Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37: 914–939PubMedCrossRefGoogle Scholar
  379. Tikkanen M, Nurmi M, Kangasjarvi S and Aro EM (2008a) Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochim Biophys Acta 1777: 1432–1437PubMedCrossRefGoogle Scholar
  380. Tikkanen M, Nurmi M, Suorsa M, Danielsson R, Mamedov F, Styring S and Aro EM (2008b) Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants. Biochim Biophys Acta 1777: 425–432PubMedCrossRefGoogle Scholar
  381. Tikkanen M, Piippo M, Suorsa M, Sirpio S, Mulo P, Vainonen J et al (2006) State transitions revisited-a buffering system for dynamic low light acclimation of Arabidopsis. Plant Mol Biol 62: 779–793PubMedCrossRefGoogle Scholar
  382. Tokutsu R, Iwai M and Minagawa J (2009) CP29, a monomeric light-harvesting complex II protein, is essential for state transitions in Chlamydomonas reinhardtii. J Biol Chem 284: 7777–7782PubMedCrossRefGoogle Scholar
  383. Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV et al (2003) Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc Natl Acad Sci USA 100: 16119–16124PubMedCrossRefGoogle Scholar
  384. Turkina MV, Blanco-Rivero A, Vainonen JP, Vener AV and Villarejo A (2006) CO2 limitation induces specific redox-dependent protein phosphorylation in Chlamydomonas reinhardtii. Proteomics 6: 2693–2704PubMedCrossRefGoogle Scholar
  385. Tuxhorn J, Daise T and Dentler WL (1998) Regulation of flagellar length in Chlamydomonas. Cell Motility and the Cytoskeleton 40: 133–146PubMedCrossRefGoogle Scholar
  386. Tyystjarvi E (2008) Photoinhibition of Photosystem II and photodamage of the oxygen evolving manganese cluster. Coordination Chem Rev 252: 361–376CrossRefGoogle Scholar
  387. Uniacke J and Zerges W (2007) Photosystem II assembly and repair are differentially localized in Chlamydomonas. Plant Cell 19: 3640–3654PubMedCrossRefGoogle Scholar
  388. Vainonen JP, Hansson M and Vener AV (2005) STN8 protein kinase in Arabidopsis thaliana is specific in phosphorylation of photosystem II core proteins. J Biol Chem 280: 33679–33686PubMedCrossRefGoogle Scholar
  389. Vallon O and Spalding MH (2009) Amino acid meta­bolism. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 115–158. Elsevier, AmsterdamCrossRefGoogle Scholar
  390. Vallon O, Bulte L, Dainese P, Olive J, Bassi R and Wollman FA (1991) Lateral redistribution of cytochrome b6f complexes along thylakoid membranes upon state transitions. Proc Natl Acad Sci USA 88: 8262–8266PubMedCrossRefGoogle Scholar
  391. Vardi A, Thamatrakoln K, Bidle K and Falkowski PG (2008) Diatom genomes come of age. Genome Biology 9: 245.1–245.5CrossRefGoogle Scholar
  392. Varsano T, Wolf SG and Pick U (2006) A chlorophyll a/b-binding protein homolog that is induced by iron deficiency is associated with enlarged photosystem I units in the eucaryotic alga Dunaliella salina. J Biol Chem 281: 10305–10315PubMedCrossRefGoogle Scholar
  393. Vener A, van Kan PJ, Rich PR, Ohad I and Andersson B (1997) Plastoquinol at the Qo-site of reduced cytochrome b/f mediates signal transduction between light and thylakoid phosphorylation. Thylakoid protein kinase deactivation by a single turnover flash. Proc Natl Acad Sci USA 94: 1585–1590.PubMedCrossRefGoogle Scholar
  394. Vernotte C, Astier C and Olive J (1990) State 1-state 2 adaptation in the cyanobacteria Synechocystis PCC 6714 wild type and Synechocystis PCC 6803 wild type and phycocyanin-less mutant. Photosyn Res 26: 203–212CrossRefGoogle Scholar
  395. Vernotte C, Picaud M, Kirilovsky D, Olive J, Ajlani G and Astier C (1992) Changes in the photosynthetic apparatus in the cyanobacterium Synechocystis sp. PCC 6714 following light-to-dark and dark-to-light transitions. Photosyn Res 32: 45–57CrossRefGoogle Scholar
  396. Wagner D, Przybyla D, Op den Camp R, Kim C, Landgraf F, Lee KP et al (2004a) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306: 1183–1185PubMedCrossRefGoogle Scholar
  397. Wagner V and Mittag M (2009) Probing circadian rhythms in Chlamydomonas rheinhardtii by functional proteomics. Methods Mol Biol 479: 173–188PubMedGoogle Scholar
  398. Wagner V, Fiedler M., Markert C, Hippler M and Mittag M (2004b) Functional proteomics of circadian expressed proteins from Chlamydomonas reinhardtii. FEBS Lett 559: 129–135PubMedCrossRefGoogle Scholar
  399. Wagner V, Ullmann K, Mollwo A, Kaminski M, Mittag M and Kreimer G (2008) The phosphoproteome of a Chlamydomonas reinhardtii eyespot fraction includes key proteins of the light signaling pathway. Plant Physiol 146: 772–788PubMedCrossRefGoogle Scholar
  400. Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56: 435–447PubMedCrossRefGoogle Scholar
  401. Wang Z, Gerstein M and Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: 57–63PubMedCrossRefGoogle Scholar
  402. Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ and Langdale JA (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21: 1109–1128PubMedCrossRefGoogle Scholar
  403. Webber AN, Bingham SE and Lee H (1995) Genetic engineering of thylakoid protein complexes by chloroplast transformation in Chlamydomonas reinhardtii. Photosyn Res 44: 191–205CrossRefGoogle Scholar
  404. Webber AN, Su H, Bingham SE, Käss H, Krabben L, Kuhn M et al (1996) Site-directed mutations affecting the spectroscopic characteristics and mid-point potential of the primary donor in photosystem I. Biochem 39: 12857–12863Google Scholar
  405. Wettstein DV, Kahn A, Nielsen OF and Gough S (1974) Genetic regulation of chlorophyll synthesis analyzed with mutants in barley. Science 184: 800–802PubMedCrossRefGoogle Scholar
  406. Wheeler GL, Miranda-Saavedra D and Barton GJ (2008) Genome analysis of the unicellular green alga Chlamydomonas reinhardtii indicates an ancient evolutionary origin for key pattern recognition and cell-signaling protein families. Genetics 179: 193–197PubMedCrossRefGoogle Scholar
  407. Wilhelm BT and Landry JR (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48: 249–257PubMedCrossRefGoogle Scholar
  408. Wilson A, Boulay C, Wilde A, Kerfeld CA and Kirilovsky D (2007) Light-induced energy dissipation in iron-starved cyanobacteria: roles of OCP and IsiA proteins. Plant Cell 19: 656–672PubMedCrossRefGoogle Scholar
  409. Woessner JP and Goodenough UW (1989) Molecular characterization of a zygote wall protein: an extensin-like molecule in Chlamydomonas reinhardtii. Plant Cell 1: 901–911PubMedGoogle Scholar
  410. Woessner JP and Goodenough UW (1992) Zygote and vegetative cell wall proteins in Chlamydomonas reinhardtii share a common epitope, (Ser Pro)x. Plant Science 83: 65–76CrossRefGoogle Scholar
  411. Woessner JP, Masson A, Harris EH, Bennoun P, Gillham NW and Boynton JE (1984) Molecular and genetic analysis of the chloroplast ATPase of Chlamydomonas. Plant Mol Biol 3: 177–190CrossRefGoogle Scholar
  412. Wollman F-A (1998) The Structure, function and biogenesis of cytochrome b 6       f complexes. In: Rochaix J-D, Goldschmidt-Clermont M and Merchant S (eds) Molecular Biology of Chlamydomonas: Chloroplasts and Mitochondria, pp 459–476. Kluwer Academic Publishers, DordrechtGoogle Scholar
  413. Wollman FA (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. Embo J 20: 3623–3630PubMedCrossRefGoogle Scholar
  414. Wollman FA and Lemaire C (1988) Studies on kinase-controlled Chlamydomonas reinhardtii which lack quinone-binding proteins. Biochim Biophys Acta 933: 85–94CrossRefGoogle Scholar
  415. Wollman FA, Minai L and Nechushtai R (1999) The biogenesis and assembly of photosynthetic proteins in thylakoid membranes 1. Biochim Biophys Acta 1411: 21–85PubMedCrossRefGoogle Scholar
  416. Worden AZ, Lee JH, Mock T, Rouze P, Simmons MP, Aerts AL et al (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324: 268–272PubMedCrossRefGoogle Scholar
  417. Wostrikoff K, Choquet Y, Wollman FA and Girard-Bascou J (2001) TCA1, A single nuclear-encoded translational activator specific for petA mRNA in Chlamydomonas reinhardtii chloroplast. Genetics 159: 119–132PubMedGoogle Scholar
  418. Wostrikoff K, Girard-Bascou J, Wollman FA and Choquet Y (2004) Biogenesis of PSI involves a cascade of translational autoregulation in the chloroplast of Chlamydomonas. Embo J 23: 2696–2705PubMedCrossRefGoogle Scholar
  419. Wykoff D, Davies J and Grossman A (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117: 129–139PubMedCrossRefGoogle Scholar
  420. Xie Z and Merchant S (1998) A novel pathway for cytochromes c biogenesis in chloroplasts. Biochim Biophys Acta 1365: 309–318PubMedCrossRefGoogle Scholar
  421. Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D et al (2008) Quality control of photosystem II: impact of light and heat stresses. Photosynth Res 98: 589–608PubMedCrossRefGoogle Scholar
  422. Yang P and Smith EF (2009) The flagellar radial spokes. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 209–238. Elsevier, AmsterdamCrossRefGoogle Scholar
  423. Yeremenko N, Jeanjean R, Prommeenate P, Krasikov V, Nixon PJ, Vermaas WF et al (2005) Open reading frame ssr2016 is required for antimycin A-sensitive photosystem I-driven cyclic electron flow in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 46: 1433–1436PubMedCrossRefGoogle Scholar
  424. Yohn CB, Cohen A, Danon A and Mayfield SP (1996) Altered mRNA binding activity and decreased translational initiation in a nuclear mutant lacking translation of the chloroplast psbA mRNA. Mol Cell Biol 16: 3560–3566PubMedGoogle Scholar
  425. Yohn CB, Cohen A, Danon A and Mayfield SP (1998a) A poly(A) binding protein functions in the chloroplast as a message-specific translation factor. Proc Natl Acad Sci USA 95: 2238–2243PubMedCrossRefGoogle Scholar
  426. Yohn CB, Cohen A, Rosch C, Kuchka MR and Mayfield SP (1998b) Translation of the chloroplast psbA mRNA requires the nuclear-encoded poly(A)-binding protein, RB47. J Cell Biol 142: 435–442PubMedCrossRefGoogle Scholar
  427. Yoshioka M, Uchida S, Mori H, Komayama K, Ohira S, Morita N et al (2006) Quality control of photosystem II. Cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress. J Biol Chem 281: 21660–21669PubMedCrossRefGoogle Scholar
  428. Zelisko A, Garcia-Lorenzo M, Jackowski G, Jansson S and Funk C (2005) AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence. Proc Natl Acad Sci USA 102: 13699–13704PubMedCrossRefGoogle Scholar
  429. Zerges W and Hauser C (2009) Protein synthesis in the chloroplast. In: Harris EH, Stern D and Witman GB (eds) The Chlamydomonas Sourcebook, pp 967–1026. Elsevier, AmsterdamCrossRefGoogle Scholar
  430. Zhang Z, Shrager J, Jain M, Chang CW, Vallon O and Grossman AR (2004) Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell 3: 1331–1348PubMedCrossRefGoogle Scholar
  431. Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ and Qi Y (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21: 1190–1203PubMedCrossRefGoogle Scholar
  432. Zhao T, Wang W, Bai X and Qi Y (2009) Gene silencing by artificial microRNAs in Chlamydomonas. Plant J 58: 157–164PubMedCrossRefGoogle Scholar
  433. Zimmer SL, Fei Z and Stern DB (2008) Genome-based analysis of Chlamydomonas reinhardtii exo­ribonucleases and poly(A) polymerases predicts unexpected organellar and exosomal features. Genetics 179: 125–136PubMedCrossRefGoogle Scholar
  434. Zimmer SL, Schein A, Zipor G, Stern DB, and Schuster G (2009) Polyadenylation in Arabidopsis and Chlamydomonas organelles: the input of nucleotidyltransferases, poly(A) polymerases and polynucleotide phosphorylase. Plant J 59: 88–99PubMedCrossRefGoogle Scholar
  435. Zito F, Finazzi G, Delosme R, Nitschke W, Picot D and Wollman FA (1999) The Qo site of cytochrome b 6       f complexes controls the activation of the LHCII kinase. Embo J 18: 2961–2969PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Arthur R. Grossman
    • 1
  • David González-Ballester
    • 1
  • Shaun Bailey
    • 2
  • Steven J. Karpowicz
    • 3
  • Sabeeha S. Merchant
    • 4
  1. 1.Department of Plant BiologyCarnegie Institution for ScienceStanfordUSA
  2. 2.Aurora BiofuelsAlamedaUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of California – Los AngelesLos AngelesUSA
  4. 4.Department of Chemistry and Biochemistry and Institute for Genomics and ProteomicsUniversity of California – Los AngelesLos AngelesUSA

Personalised recommendations