In Car Audio

  • Stefania Cecchi
  • Lorenzo Palestini
  • Paolo Peretti
  • Andrea Primavera
  • Francesco Piazza
  • Francois Capman
  • Simon Thabuteau
  • Christophe Levy
  • Jean-Francois Bonastre
  • Ariano Lattanzi
  • Emanuele Ciavattini
  • Ferruccio Bettarelli
  • Romolo Toppi
  • Emiliano Capucci
  • Fabrizio Ferrandi
  • Marco Lattuada
  • Christian Pilato
  • Donatella Sciuto
  • Wayne Luk
  • Jose Gabriel de Figueiredo Coutinho

Abstract

In the last decade automotive audio has been gaining great attention by the scientific and industrial communities. In this context, a new approach to test and develop advanced audio algorithms for an heterogeneous embedded platform has been proposed within the European hArtes project. A real audio laboratory installed in a real car (hArtes CarLab) has been developed employing professional audio equipment. The algorithms can be tested and validated on a PC exploiting each application as a plug-in of the real time NU-Tech framework. Then a set of tools (hArtes Toolchain) can be used to generate code for the embedded platform starting from the plug-in implementation. An overview of the whole system is here presented, taking into consideration a complete set of audio algorithms developed for the advanced car infotainment system (ACIS) that is composed of three main different applications regarding the In Car listening and communication experience. Starting from a high level description of the algorithms, several implementations on different levels of hardware abstraction are presented, along with empirical results on both the design process undergone and the performance results achieved.

References

  1. 1.
  2. 2.
    Amand, F., Benesty, J., Gilloire, A., Grenier, Y.: Multichannel acoustic echo cancellation. In: Proceedings of International Workshop on Acoustic, Echo and Noise Control, Jun. 1993 Google Scholar
  3. 3.
    Amrane, O.A., Moulines, E., Grenier, Y.: Structure and convergence analysis of the generalised multi-delay adaptive filter. In: Proceedings of EUSIPCO, August 1992 Google Scholar
  4. 4.
    Benesty, J., Amand, F., Gilloire, A., Grenier, Y.: Adaptive filtering algorithms for stereophonic acoustic echo cancellation. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (1995) Google Scholar
  5. 5.
    Berthault, F., Glorion, C., Capman, F., Boudy, J., Lockwood, P.: Stereophonic acoustic echo cancellation and application to speech recognition: some experimental results. In: Proceedings of International Workshop on Acoustic, Echo and Noise Control (1997) Google Scholar
  6. 6.
    Bitzer, J., Simmer, K.U., Kammeyer, K.D.: Multi-microphone noise reduction by post-filter and super-directive beam-former. In: Proceedings of International Workshop on Acoustic, Echo and Noise Control, pp. 100–103 (1999) Google Scholar
  7. 7.
    Bonastre, J.F., Morin, P., Junqua, J.C.: Gaussian dynamic warping (GDW) method applied to text-dependent speaker detection and verification. Eurospeech, pp. 2013–2016 (2003) Google Scholar
  8. 8.
    Boudy, J., Capman, F., Lockwood, P.: A globally optimised frequency-domain acoustic echo canceller for adverse environment applications. In: Proceedings of International Workshop on Acoustic, Echo and Noise Control (1995) Google Scholar
  9. 9.
    Buchner, H., Benesty, J., Kellermann, W.: An extended multidelay filter: fast low-delay algorithms for very high-order adaptive systems. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, April, vol. 5, pp. 385–388 (2003) Google Scholar
  10. 10.
    Buchner, H., Benesty, J., Kellermann, W.: Generalised multi-channel frequency-domain adaptive filtering: efficient realization and application to hands-free speech communication. In: Signal Processing, Mar., vol. 85(3), pp. 549–570 (2005) Google Scholar
  11. 11.
    Buchner, H., Benesty, J., Kellermann, W.: Generalised multi-channel frequency-domain adaptive filtering: efficient realization and application to hands-free speech communication. Signal Process. 85(3), 549–570 (2005) MATHCrossRefGoogle Scholar
  12. 12.
    Capman, F., Boudy, J., Lockwood, P.: Acoustic echo cancellation and noise reduction in the frequency-domain: a global optimization. In: Proceedings of European Signal Processing Conference (EUSIPCO) (1996) Google Scholar
  13. 13.
    Cecchi, S., Palestini, L., Peretti, P., Moretti, E., Piazza, F., Lattanzi, A., Bettarelli, F.: Advanced audio algorithms for a real automotive digital audio system. In: Proc. of the 125th Audio Engineering Society Convention, Oct. 2008 Google Scholar
  14. 14.
    Cecchi, S., Primavera, A., Piazza, F., Bettarelli, F., Ciavattini, E., Toppi, R., Coutinho, J.G.F., Luk, W., Pilato, C., Ferrandi, F., Sima, V., Bertels, K.: The hArtes CarLab: a new approach to advanced algorithms development for automotive audio. In: Proc. of the 129th Audio Engineering Society Convention, Nov. 2010 Google Scholar
  15. 15.
    Crockett, B., Smithers, M., Benjamin, E.: Next generation automotive research and technologies. In: Proc. of the 120th Audio Engineering Society Convention, May 2006 Google Scholar
  16. 16.
    Dentino, M., McCool, J., Widrow, B.: Adaptive filtering in frequency domain. In: Proceedings of the IEEE, December, vol. 66-12 (1978) Google Scholar
  17. 17.
    DiBiase, J.H.: A high accuracy low latency technique for talker localization in reverberant environments using microphone arrays. Ph.D. thesis, Brown University, Rhode Island, May 2000 Google Scholar
  18. 18.
    Ephraim, Y., Malah, D.: Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator. IEEE Trans. Acoust. Speech Audio Signal Process. 32(6), 1109–1121 (1984) CrossRefGoogle Scholar
  19. 19.
    Ephraim, Y., Malah, D.: Speech enhancement using a minimum mean-square error log-spectral amplitude estimator. IEEE Trans. Acoust. Speech Audio Signal Process. 33(2), 443–445 (1985) CrossRefGoogle Scholar
  20. 20.
    Farina, A., Ugolotti, E.: Spatial equalization of sound systems in cars. In: Proc. of 15th AES Conference Audio, Acoustics & Small Spaces, Oct. (1998) Google Scholar
  21. 21.
    Ferrara, E.R.: Fast implementation of LMS adaptive filters. In: IEEE transactions on acoustics, speech and signal processing, Aug. 1980 Google Scholar
  22. 22.
    Ferreira, A.J.S., Leite, A.: An improved adaptive room equalization in the frequency domain. In: Proc. of the 118th Audio Engineering Society Convention, May 2005 Google Scholar
  23. 23.
    Haulick, T.: Signal processing and performance evaluation for in-car cabin communication systems. In: ITU-T Workshop on Standardization in Telecommunication for Motor Vehicles, Nov. 2003 Google Scholar
  24. 24.
    Haulick, T.: Speech enhancement methods for car applications, the fully networked car. A Workshop on ICT in Vehicles, ITU-T Geneva, Mar. 2005 Google Scholar
  25. 25.
    Haulick, T.: Systems for improvement of the communication in passenger compartment. In: ETSI Workshop on Speech and Noise in Wideband Communication, Sophia Antipolis, 22–23 May 2007 Google Scholar
  26. 26.
    House, N.: Aspects of the vehicle listening environment. In: Proc. of the 87th Audio Engineering Society Convention, Oct. 1989 Google Scholar
  27. 27.
    Jelinek, F.: Continuous speech recognition by statistical methods. Proc. IEEE 64-4, 532–556 (1976) CrossRefGoogle Scholar
  28. 28.
    Kontro, J., Koski, A., Sjoberg, J., Vaananen, M.: Digital car audio system. IEEE Trans. Consum. Electron. 39(3), 514–521 (1993) CrossRefGoogle Scholar
  29. 29.
    Lang, M., Laakso, T.: Simple and robust method for the design of allpass filters using least-squares phase error criterion. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 41(1), 40–48 (1994) CrossRefGoogle Scholar
  30. 30.
    Larcher, A., Bonastre, J.F., Mason, J.S.D.: Reinforced temporal structure information for embedded utterance-based. Interspeech (2008) Google Scholar
  31. 31.
    Lariviere, J., Goubran, R.: GMDF for noise reduction and echo cancellation. IEEE Signal Process. Lett. 7(8), 230–232 (2000) CrossRefGoogle Scholar
  32. 32.
    Lariviere, J., Goubran, R.: Noise-reduced GMDF for acoustic echo cancellation and speech recognition in mobile environments. In: Vehicular Technology Conference, vol. 6, pp. 2969–2972 (2000) Google Scholar
  33. 33.
    Lattanzi, A., Bettarelli, F., Cecchi, S.: NU-Tech: the entry tool of the hArtes toolchain for algorithms design. In: Proc. of the 124th Audio Engineering Society Convention, May 2008 Google Scholar
  34. 34.
    Levy, C.: Modèles acoustiques compacts pour les systèmes embarqués, Ph.D. thesis (2006) Google Scholar
  35. 35.
    Levy, C., Linares, G., Nocera, P., Bonastre, J.F.: Embedded mobile phone digit-recognition. In: Advances for In-Vehicle and Mobile Systems (2007), Chapter 7 Google Scholar
  36. 36.
  37. 37.
    Linhard, K., Freudenberger, J.: Passenger in-car communication enhancement. In: Proceedings of European Signal Processing Conference (EUSIPCO) (2004) Google Scholar
  38. 38.
    Lipshitz, S.P., Vanderkooy, J.: A family of linear-phase crossover networks of high slope derived by time delay. J. Audio Eng. Soc., 31(1–2), 2–20 (1983) Google Scholar
  39. 39.
    Lleida, E., Masgrau, E., Ortega, A.: Acoustic echo control and noise reduction for cabin car communication. In: Proceedings of Eurospeech, Sep., vol. 3, pp. 1585–1588 (2001) Google Scholar
  40. 40.
    Mansour, D., Gray, A.H.: Unconstrained frequency-domain adaptive filter. In: IEEE Transactions on Acoustics, Speech and Signal Processing, Oct. 1982 Google Scholar
  41. 41.
    Marro, C., Mahieux, Y., Simmer, K.U.: Analysis of noise reduction and dereverberation techniques based on microphone arrays with post-filtering. IEEE Trans. Speech Audio Process. 6(3), 240–259 (1998) CrossRefGoogle Scholar
  42. 42.
    McCowan, I.A., Bourlard, H.: Microphone array post-filter based on noise field coherence. IEEE Trans. Speech Audio Process. 11, 709–716 (2003) CrossRefGoogle Scholar
  43. 43.
    Meyer, J., Simmer, K.U.: Multi-channel speech enhancement in a car environment using wiener filtering and spectral subtraction. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 21–24 (1997) Google Scholar
  44. 44.
    Moulines, E., Amrane, O.A., Grenier, Y.: The generalised multi-delay adaptive filter: structure and convergence analysis. IEEE Trans. Signal Process. 43, 14–28 (1995) CrossRefGoogle Scholar
  45. 45.
  46. 46.
    NUTS Software Development Kit 2.0 (Rev 1.1): http://www.nu-tech-dsp.com
  47. 47.
    Orfanidis, J.S.: High-order digital parametric equalizer design. J. Audio Eng. Soc. 53(11), 1026–1046 (2005) Google Scholar
  48. 48.
    Ortega, A., Lleida, E., Masgrau, E.: DSP to improve oral communications inside vehicles. In: Proceedings of European Signal Processing Conference (EUSIPCO) (2002) Google Scholar
  49. 49.
    Ortega, A., Lleida, E., Masgrau, E., Gallego, F.: Cabin car communication system to improve communications inside a car. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, May, vol. 4, pp. 3836–3839 (2002) Google Scholar
  50. 50.
    Ortega, A., Lleida, E., Masgrau, E.: Residual echo power estimation for speech reinforcement systems in vehicles. In: Proceedings of Eurospeech, Sep. 2003 Google Scholar
  51. 51.
    Ortega, A., Lleida, E., Masgrau, E.: Speech reinforcement system for car cabin communications. IEEE Trans. Speech Audio Process. 13(5), 917–929 (2005) CrossRefGoogle Scholar
  52. 52.
    Ortega, A., Lleida, E., Masgrau, E., Buera, L., Miguel, A.: Acoustic feedback cancellation in speech reinforcement systems for vehicles. In: Proceedings of Interspeech (2005) Google Scholar
  53. 53.
    Ortega, A., Lleida, E., Masgrau, E., Buera, L., Miguel, A.: Stability control in a two-channel speech reinforcement system for vehicles. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (2006) Google Scholar
  54. 54.
    Palestini, L., Peretti, P., Cecchi, S., Piazza, F., Lattanzi, A., Bettarelli, F.: Linear phase mixed FIR/IIR crossover networks: design and real-time implementation. In: Proc. of the 123th Audio Engineering Society Convention, Oct. 2007 Google Scholar
  55. 55.
    Piazza, F., Cecchi, S., Palestini, L., Peretti, P., Bettarelli, F., Lattanzi, A., Moretti, E., Ciavattini, E.: Demonstrating hArtes project approach through an advanced car information system. In: ISVCS Int. Symposium on Vehicular Computing Systems, Trinity College, Dublin, Ireland, 22–24 Jul. 2008 Google Scholar
  56. 56.
    Rangachari, S.: A noise estimation algorithm for highly non-stationary environments. Speech Commun. 48, 220–231 (2006) CrossRefGoogle Scholar
  57. 57.
    Regalia, P., Mitra, S.: Class of magnitude complementarity loudspeaker crossovers. IEEE Trans. Acoust. Speech Signal Process. 35, 1509–1516 (1987) CrossRefGoogle Scholar
  58. 58.
    Schopp, H., Hetzel, H.: A linear phase 512 band graphic equalizer using the fast Fourier transform. In: Proc. of the 96th Audio Engineering Society Convention, Jan. 1994 Google Scholar
  59. 59.
    Shivley, R.: Automotive audio design (a tutorial). In: Proc. of the 109th Audio Engineering Society Convention, Sep. 2000 Google Scholar
  60. 60.
    Smithers, M.: Improved stereo imaging in automobiles. In: Proc. of the 123rd Audio Engineering Society Convention, Oct. 2007 Google Scholar
  61. 61.
    Sommen, P.C.W.: Frequency-domain adaptive filter with efficient window function. In: Proceedings of ICC-86, Toronto (1986) Google Scholar
  62. 62.
    Sondhi, M.M., Morgan, D.R., Hall, J.L.: Stereophonic acoustic echo cancellation—an overview of the fundamental problem. IEEE Signal Process. Lett. 2(8), 148–151 (1995) CrossRefGoogle Scholar
  63. 63.
    Soo, J.-S., Pang, K.K.: Multidelay block frequency domain adaptive filter. In: IEEE Transactions on Acoustics, Speech and Signal Processing, Feb. 1990 Google Scholar
  64. 64.
    Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 2-13, 260–269 (1967) CrossRefGoogle Scholar
  65. 65.
    Widrows, B., Cool, J.M.C., Ball, M.: The complex LMS algorithm. In: Proceedings of the IEEE, Apr., vol. 63-4 (1975) Google Scholar
  66. 66.
    Zelinski, R.: A microphone array with adaptive post-filtering for noise reduction in reverberant rooms. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, April, pp. 2578–2581 (1988) Google Scholar
  67. 67.
    Zhao, H., Yu, J.: A simple and efficient design of variable fractional delay FIR filters. IEEE Trans. Circuits and Syst. II, Express Briefs 53(2), 157–160 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Stefania Cecchi
    • Lorenzo Palestini
      • Paolo Peretti
        • Andrea Primavera
          • Francesco Piazza
            • Francois Capman
              • 1
            • Simon Thabuteau
              • 1
            • Christophe Levy
              • 2
            • Jean-Francois Bonastre
              • 2
            • Ariano Lattanzi
              • 3
            • Emanuele Ciavattini
              • 3
            • Ferruccio Bettarelli
              • 3
            • Romolo Toppi
              • 4
            • Emiliano Capucci
              • 4
            • Fabrizio Ferrandi
              • 5
            • Marco Lattuada
              • 5
            • Christian Pilato
              • 5
            • Donatella Sciuto
              • 5
            • Wayne Luk
              • 6
            • Jose Gabriel de Figueiredo Coutinho
              • 6
            1. 1.DIBET—Universitá Politecnica delle MarcheAnconaItaly
            2. 2.Thales CommunicationsColombesFrance
            3. 3.Université d’Avignon et des Pays de VaucluseAvignonFrance
            4. 4.Leaff EngineeringPorto Potenza PicenaItaly
            5. 5.Faital SpaSan Donato MilaneseItaly
            6. 6.Politecnico di MilanoMilanItaly

            Personalised recommendations