Spectral Methods to Advance Understanding of Dissolved Organic Carbon Dynamics in Forested Catchments

  • Rose M. CoryEmail author
  • Elizabeth W. Boyer
  • Diane M. McKnight
Part of the Ecological Studies book series (ECOLSTUD, volume 216)


Dissolved organic carbon (DOC) has long been recognized to be a critical water quality characteristic in forested catchments, as it is a major component of the carbon balance and energy cycle in aquatic ecosystems, and is highly relevant to a diversity of environmental problems. Challenges remain in quantifying fluxes of DOC in surface waters, and understanding its composition and reactivity. Here, we review the use of simple spectral methods to quantify DOC concentration and composition in surface waters. We discuss use of absorbance spectroscopy, which has been widely used as a surrogate for DOC concentration and as an indicator of changing DOC composition in waters of forested catchments; and the use of fluorescence spectroscopy, where spectral analyses of three-dimensional excitation-emission matrices are used to characterize sources of DOC. Finally, we discuss future needs in fluorescence biogeochemistry.


Particulate Organic Matter Particulate Organic Carbon Dissolve Organic Carbon Concentration Dissolve Organic Matter Spectral Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ågren A, Buffam I, Berggren M et al (2008) Dissolved organic carbon characteristics in boreal streams in a forest-wetland gradient during the transition between winter and summer. J Geophys Res 113:G03031. doi: 10.1029/2007JG000674 CrossRefGoogle Scholar
  2. Aiken GR (1992) Chloride interference in the analysis of dissolved organic carbon by the wet oxidation method. Environ Sci Technol 26:2435–2439CrossRefGoogle Scholar
  3. Aiken G, Cotsaris E (1995) Soil and hydrology – their effect on NOM. J Am Water Works Assoc 87:36–45Google Scholar
  4. Aiken GR, McKnight DM, Thorn KA, Thurman EM (1992) Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Org Geochem 18:567–573CrossRefGoogle Scholar
  5. Aiken G, Kaplan LA, Weishaar J (2002) Assessment of relative accuracy in the determination of organic matter concentrations in aquatic systems. J Environ Monitor 4:70–74. doi: 10.1039/b107322m CrossRefGoogle Scholar
  6. Baker A, Spencer RGM (2004) Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci Total Environ 333:217–232CrossRefGoogle Scholar
  7. Baker A, Elliott S, Lead JR (2007) Effects of filtration and pH perturbation on freshwater organic matter fluorescence. Chemosphere 67:2035–2043CrossRefGoogle Scholar
  8. Balcarczyk KL, Jones JB Jr, Jaffe R et al (2009) Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry 94:255–270. doi: 10.1007/s10533-009-9324-x CrossRefGoogle Scholar
  9. Bergamaschi BA, Fram MS, Kendall C et al (1999) Carbon isotopic constraints on the contribution of plant material to the natural precursors of trihalomethanes. Org Geochem 30:835–842CrossRefGoogle Scholar
  10. Boyer EW, Hornberger GM, Bencala KE et al (1997) Response characteristics of DOC flushing in an alpine catchment. Hydrol Process 11:1635–1647CrossRefGoogle Scholar
  11. Boyer EW, Hornberger GM, Bencala KE et al (2000) Effects of asynchronous snowmelt on flushing of dissolved organic carbon: a mixing model approach. Hydrol Process 14:3291–3308CrossRefGoogle Scholar
  12. Carpenter SR, Cole JJ, Pace ML et al (2005) Ecosystems subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86:2737–2750. doi: 10.1890/04-1282 CrossRefGoogle Scholar
  13. Carstea EM, Baker A, Pavelescu G et al (2009) Continuous fluorescence assessment of organic matter variability on the Bournbrook River, Birmingham, UK. Hydrol Process 23:1937–1946. doi: 10.1002/hyp. 7335 CrossRefGoogle Scholar
  14. Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Mar Chem 51:325–346CrossRefGoogle Scholar
  15. Coble PG, Green SA, Blough NV et al (1990) Characterization of dissolved organic-matter in the Black-Sea by fluorescence spectroscopy. Nature 348:432–435CrossRefGoogle Scholar
  16. Coble PG, Schultz CA, Mopper K (1993) Fluorescence contouring analysis of DOC intercalibration experiment samples – a comparison of techniques. Mar Chem 41:173–178CrossRefGoogle Scholar
  17. Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149CrossRefGoogle Scholar
  18. Cory RM, McKnight DM, Chin YP et al (2007) Chemical characteristics of fulvic acids from Arctic surface waters: microbial contributions and photochemical transformations. J Geophys Res 112:G04S51, doi: 10.1029/2006JG000343
  19. Cory RM, Miller MP, McKnight DM et al (2010) Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol Oceanogr Meth 8:67–78CrossRefGoogle Scholar
  20. Cotner JB, Biddanda BA, Makino W et al (2004) Organic carbon biogeochemistry of Lake Superior. Aquat Ecosyst Health 7:451–464CrossRefGoogle Scholar
  21. Erlandsson M, Buffam I, Folster J et al (2008) Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Global Change Biol 14:1191–1198. doi: 10.1111/j.1365-2486.2008.01551.x CrossRefGoogle Scholar
  22. Fellman JB, Hood E, Edwards RT et al (2009a) Changes in the concentration, biodegradability, and fluorescent properties of dissolved organic matter during stormflows in coastal temperate watersheds. J Geophys Res 114:G01021. doi: 10.1029/2008JG000790 CrossRefGoogle Scholar
  23. Fellman JB, Hood E, Edwards RT et al (2009b) Uptake of allochthonous dissolved organic matter from soil and salmon in coastal temperate rainforest streams. Ecosystems 12:747–759. doi: 10.1007/s10021-009-9254-4 CrossRefGoogle Scholar
  24. Fellman JB, Hood E, D’Amore DV et al (2009c) Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry 95:277–293. doi: 10.1007/s10533-009-9336-6 CrossRefGoogle Scholar
  25. Fimmen RL, Cory RM, Chin YP et al (2007) Probing the oxidation-reduction properties of terrestrially and microbially derived dissolved organic matter. Geochim Cosmochim Acta 71:3003–3015CrossRefGoogle Scholar
  26. Findlay SEG, Sinsabaugh RL (eds) (2003) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, San DiegoGoogle Scholar
  27. Fisher SG, Likens GE (1973) Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–439. doi: 10.2307/1942301 CrossRefGoogle Scholar
  28. Fuiji R, Ranalli AJ, Aiken GR et al (1998) Dissolved organic carbon concentrations and compositions, and trihalomethane formation potentials in waters from agricultural peat soils, Sacramento-San Joaquin Delta, California: implications for drinking-water quality. Water Resources Investigations Report WRIR-98-4147Google Scholar
  29. Fulton JR, McKnight DM, Foreman CM et al (2004) Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake. Aquat Sci 66:27–46CrossRefGoogle Scholar
  30. Haitzer M, Aiken GR, Ryan JN (2002) Binding of mercury (II) to aquatic humic substances: the role of the mercury-to-DOM concentration ratio. Environ Sci Technol 36:3564–3570CrossRefGoogle Scholar
  31. Hedges JI (2002) Why dissolved organic matter? In: Hansell D, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, Amsterdam, pp 1–34CrossRefGoogle Scholar
  32. Helms JR, Stubbins A, Ritchie JD et al (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969CrossRefGoogle Scholar
  33. Hockaday WC, Purcell JM, Marshall AG et al (2009) Electrospray and photoionization mass spectrometry for the characterization of organic matter in natural waters: a qualitative assessment. Limnol Oceanogr Meth 7:81–95CrossRefGoogle Scholar
  34. Holbrook RD, DeRose PC, Leigh DS et al (2006) Excitation–emission matrix fluorescence spectroscopy for natural organic matter characterization: a quantitative evaluation of calibration and spectral correction procedures. Appl Spectrosc 60:791–799CrossRefGoogle Scholar
  35. Hood E, McKnight DM, Williams MW (2003) Sources and chemical quality of dissolved organic carbon (DOC) across and alpine/subalpine ecotone, Green Lakes Valley, Colorado Front Range, USA. Water Resour Res 39:1188. doi: 10.1029/2002WR001738 Google Scholar
  36. Hood E, Williams MW, Mcknight DM (2005) Sources of dissolved organic matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes. Biogeochemistry 74:231–255CrossRefGoogle Scholar
  37. Hood E, Fellman J, Spencer RGM et al (2009) Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462:1044–1047. doi: 10.1038/nature08580 CrossRefGoogle Scholar
  38. Hu CM, Muller-Karger FE, Zepp RG (2002) Absorbance, absorption coefficient, and apparent quantum yield: a comment on common ambiguity in the use of these optical concepts. Limnol Oceanogr 47:1261–1267Google Scholar
  39. Huang W, Chen RF (2009) Sources and transformations of chromophoric dissolved organic matter in the Neponset River Watershed. J Geophys Res 114:G00F05, doi: 10.1029/2009JG000976
  40. Hudson N, Baker A, Ward D et al (2008) Can fluorescence spectrometry be used as a surrogate for the biochemical oxygen demand (BOD) test in water quality assessment? An example from South West England. Sci Total Environ 391:149–158. doi: 10.1016/j.scitotenv.2007.10.054 CrossRefGoogle Scholar
  41. Jaffe R, McKnight DM, Maie N et al (2008) Spatial and temporal variations in DOM composition in ecosystems: the importance of long-term monitoring of optical properties. J Geophys Res 113: doi: 10.1029/2008JG000683
  42. Kaplan LA (1992) Comparison of high-temperature and persulfate oxidation methods for determination of dissolved organic carbon in freshwaters. Limnol Oceanogr 37(5):1119–1125CrossRefGoogle Scholar
  43. Kim S, Kaplan LA, Hatcher PG (2006) Biodegradable dissolved organic matter in a temperate and a tropical stream determined from ultra-high resolution mass spectrometry. Limnol Oceanogr 51:1054–1063CrossRefGoogle Scholar
  44. Klapper L, McKnight DM, Fulton JR et al (2002) Fulvic acid oxidation state detection using fluorescence spectroscopy. Environ Sci Technol 36:3170–3175CrossRefGoogle Scholar
  45. Kujawinski EB, Del Vecchio R, Blough NV et al (2004) Probing molecular-level transformations of dissolved organic matter: insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem 92:23–37CrossRefGoogle Scholar
  46. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Springer, HeidelbergGoogle Scholar
  47. Leenheer JA, Croue JP (2003) Characterizing aquatic dissolved organic matter. Environ Sci Technol 37:18–26CrossRefGoogle Scholar
  48. McGlynn BL, McDonnell JJ (2003) Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resour Res 39:1090. doi: 10.1029/2002WR001525 CrossRefGoogle Scholar
  49. McKnight DM, Bencala KE, Zellweger GW et al (1992) Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of Deer Creek with the Snake River, Summit Country, Colorado. Environ Sci Technol 26:1388–1396Google Scholar
  50. McKnight DM, Harnish R, Wershaw RL et al (1997) Chemical characteristics of particulate, colloidal, and dissolved organic material in Loch Vale Watershed, Rocky Mountain National Park. Biogeochemistry 36:99–124CrossRefGoogle Scholar
  51. McKnight DM, Boyer EW, Westerhoff PK et al (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48CrossRefGoogle Scholar
  52. McKnight DM, Hood E, Klapper L (2003) Trace organic moieties in dissolved organic matter in natural waters. In: Findlay SEG, Sinsabaugh RL (eds) Interactivity of dissolved organic matter. Academic Press, San Diego, pp 71–93Google Scholar
  53. Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci 282:401–450CrossRefGoogle Scholar
  54. Meyer JL, Edwards RT (1990) Ecosystem metabolism and turnover of organic carbon along a blackwater river continuum. Ecology 71:668–677Google Scholar
  55. Miller MP, McKnight DM, Cory RM et al (2006) Hyporheic exchange and fulvic acid redox reactions in an alpine stream. Environ Sci Technol 40:5943–5949CrossRefGoogle Scholar
  56. Miller MP, McKnight DM, Chapra SC (2009) A model of degradation and production of three pools of dissolved organic matter in an alpine lake. Limnol Oceanogr 54:2213–2227CrossRefGoogle Scholar
  57. Miller M, Simone BE, McKnight DM et al (2010) New light on a dark subject: comment. Aquat Sci 72:269–275. doi: 10.1007/s00027-010-0130-2 Google Scholar
  58. Mobed JJ, Hemmingsen SL, Autry JA (1996) Fluorescence characterization of IHSS humic substances: total luminescence spectra with absorbance correction. Environ Sci Technol 30:3061–3065CrossRefGoogle Scholar
  59. Monteith DT, Stoddard JL, Evans CD et al (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–539. doi: 10.1038/nature06316 CrossRefGoogle Scholar
  60. Mulholland PJ (1997) Dissolved organic matter concentration and flux in streams. J North Am Benthol Soc 16:131–141Google Scholar
  61. Mulholland PJ, Hill WR (1997) Seasonal patterns in streamwater nutrient and dissolved organic carbon concentrations: separating catchment flow path and in-stream effects. Water Resour Res 33:1297–1306CrossRefGoogle Scholar
  62. Naiman RJ, Melillo JR, Lock MA et al (1987) Longitudinal patterns of ecosystem processes and community structure in a subarctic river continuum. Ecology 68:1139–1156Google Scholar
  63. Oliver BG, Thurman EM, Malcolm RL (1983) The contribution of humic substances to the acidity of colored natural waters. Geochim Cosmochim Acta 47:2031–2035. doi: 10.1016/0016-7037(83)90218-1 CrossRefGoogle Scholar
  64. Porcal P, Hejzlar J, Kopáček J (2004) Seasonal and photochemical changes of DOM in an acidified forest lake and its tributaries. Aquat Sci 66:211–222. doi: 10.1007/s00027-004-0701-1 CrossRefGoogle Scholar
  65. Roberts BJ, Mulholland PJ, Hill WR (2007) Multiple scales of temporal variability in ecosystem metabolism rates: results from two years of continuous monitoring in a forested headwater stream. Ecosystems 10:588–606. doi: 10.1007/s10021-007-9059-2 CrossRefGoogle Scholar
  66. Saraceno JF, Pellerin BA, Downing BD et al (2009) High-frequency in situ optical measurements during a storm event: assessing relationships between dissolved organic matter, sediment concentrations, and hydrologic processes. J Geophys Res 114:G00F09, doi: 10.1029/2009JG000989
  67. Scott DT, McKnight DM, Blunt-Harris EL et al (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ Sci Technol 32:2984–2989CrossRefGoogle Scholar
  68. Scott DT, Runkel RL, McKnight DM et al (2003) Transport and cycling of iron and hydrogen peroxide in a freshwater stream: influence of organic acids. Water Resour Res 39:1308CrossRefGoogle Scholar
  69. Sleighter RL, Hatcher PG (2007) The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. J Mass Spectr 42:559–574CrossRefGoogle Scholar
  70. Spencer RGM, Pellerin BA, Bergamaschi BA et al (2007) Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA). Hydrol Process 21:3181–3189. doi: 10.1002/hyp. 6887 CrossRefGoogle Scholar
  71. Spencer RGM, Aiken GR, Wickland KP et al (2008) Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska. Glob Biogeochem Cycles 22:GB4002, doi: 10.1029/2008GB003231
  72. Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Meth 6:572–579CrossRefGoogle Scholar
  73. Stedmon C, Markager S (2001) The optics of chromophoric dissolved organic matter (CDOM) in the Greenland Sea: an algorithm for differentiation between marine and terrestrially derived organic matter. Limnol Oceanogr 46:2087–2093CrossRefGoogle Scholar
  74. Stedmon CA, Markager S (2005) Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnol Oceanogr 50:1415–1426CrossRefGoogle Scholar
  75. Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–254CrossRefGoogle Scholar
  76. Thurman EM (1985) Organic geochemistry of natural waters. Nijhoff/Junk Publishers, BostonGoogle Scholar
  77. Thurman EM, Malcolm RI (1981) Preparative isolation of aquatic humic substances. Environ Sci Technol 15:463–466CrossRefGoogle Scholar
  78. Vahatalo AV, Wetzel RG (2004) Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months-years) exposures. Mar Chem 89:313–326. doi: 10.1016/j.marchem.2004.03.010 CrossRefGoogle Scholar
  79. Weishaar JL, Aiken GR, Bergamaschi BA et al (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708CrossRefGoogle Scholar
  80. Williams CJ, Yamashita Y, Wilson HF et al (2010) Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol Oceanogr 55:1159–1171. doi: 10.4319/lo.2010.55.3.1159 CrossRefGoogle Scholar
  81. Wilson HF, Xenopoulos MA (2009) Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat Geosci 2:37–41. doi: 10.1038/NGEO391 CrossRefGoogle Scholar
  82. Yamashita Y, Tanoue E (2003) Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Mar Chem 82:255–271CrossRefGoogle Scholar
  83. Yoshioka T, Mostofa KMG, Konohira E et al (2007) Distribution and characteristics of molecular size fractions of freshwater dissolved organic matter in watershed environments: its implication to degradation. Limnology 8:29–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Rose M. Cory
    • 1
    Email author
  • Elizabeth W. Boyer
    • 2
  • Diane M. McKnight
    • 3
  1. 1.Department of Environmental Sciences and Engineering Gillings School of Global Public HealthUniversity of North CarolinaChapel HillUSA
  2. 2.School of Forest ResourcesThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Institute of Arctic and Alpine Research Department of Civil, Environmental and Architectural EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations