Evaluation of Vertical Profiles in Mesoscale Meteorological Models Based on Observations for the COST728 Study of Winter 2003 PM Episodes in Europe

  • Sven-Erik GryningEmail author
  • Ekaterina Batchvarova
  • Markus Quante
  • Volker Matthias
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


An important new emphasis in meteorological models evaluation is the thorough discussion of vertical profiles of meteorological parameters. This discussion contributes to the understanding of why different mesometeorological models calculate quite different wind and temperature profiles and atmospheric boundary layer heights (even when using the same method) while all show good agreement between simulated and measured surface data. The wind, temperature and turbulence profiles influence significantly the transport and diffusion of pollutants in the air. The calculations of a number of crucial parameters in air quality models, such as deposition and biogenic emissions, also depend on meteorological parameters. The availability of 3D measured wind fields provided by wind profile radars and lidars give a new challenge for such studies. The 3D model to measurements comparisons should consider new performance statistics. This study presents few examples from the COST 728 intercomparison exercise for the winter of 2003 in Europe.


Atmospheric boundary-layer Methods for model evaluation Vertical profiles Flux measurements Wind profiler Natural variability 



The data from Lindenberg are provided through the CEOP/GEWEX BALTEX (Baltic Sea Experiment) database and it is a pleasure to acknowledge the Deutscher Wetterdienst (DWD) – Meteorologisches Observatorium Lindenberg/ Richard Assmann Observatorium who originally provided the measurements for the data base. The study is supported by the Danish Council for Strategic Research, Sagsnr 2104-08-0025 and the EU FP7 Marie Curie Fellowship PIEF-GA-2009-237471-VSABLA. The work is part of collaboration within COST 728 - A. Aulinger, C. Chemel, G. Geertsema, B. Geyer, H. Jakobs, A. Kerschbaumer, M. Prank, R. San José, H. Schlünzen, J. Struzewska, B. Szintai, R. Wolke have participated in the discussions on this intercomparison exercise.


  1. 1.
    Batchvarova E, Gryning S-E (2010) The ability of mesoscale meteorological models to predict the vertical profiles of meteorological parameters. In: Steyn DG, Rao ST (eds) Air pollution modeling and its application XX, vol 103. Springer, Dordrecht, pp 379–383Google Scholar
  2. 2.
    Quante M, Matthias V, Gryning S.-E, Batchvarova E, Aulinger A, Chemel C, Geertsema G, Geyer B, Jakobs H, Kerschbaumer A, Frank M, San José R, Schlünzen H, Struzewska J, Szintai B, Wolke R (2009) Using windprofiler data in time and frequency domain for the evaluation of meteorological drivers employed in chemistry transport modeling. In: Apituley A, Russchenberg HWJ, Monna WAA (eds) 8th International symposium on tropospheric profiling. Delft (NL), 18–23 Oct 2009. RIVM, Delft, 2009. S07-006-1-S07-006-4 p. Type: Conference paper published in book/proceedingGoogle Scholar
  3. 3.
    Sreenivasan KR, Chambers AJ, Antonia RA (1978) Accuracy of moments of velocity and scalar fluctuations in the atmospheric surface layer. Bound-Lay Meteorol 14:341–359CrossRefGoogle Scholar
  4. 4.
    Stern R, Builtjes P, Schaap M, Timmermans R, Vautard R, Hodzic A, Memmesheimer M, Feldmann H, Renner E, Wolke R, Kerschbaumer A (2008) A model inter-comparison study focussing on episodes with elevated PM10 concentrations. Atmos Environ 42:4567–4588CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sven-Erik Gryning
    • 1
    Email author
  • Ekaterina Batchvarova
    • 1
    • 2
  • Markus Quante
    • 3
  • Volker Matthias
    • 3
  1. 1.National Laboratory for Sustainable EnergyRISØ DTURoskildeDenmark
  2. 2.National Institute of Meteorology and HydrologySofiaBulgaria
  3. 3.Helmholtz-Zentrum GeesthachtGeesthachtGermany

Personalised recommendations