One-Dimensional Hydrodynamic Mixing Models for Regional Flow Systems Under Areal Recharge Conditions and Their Application to the Interpretation of Isotopic Data

Chapter
Part of the Theory and Applications of Transport in Porous Media book series (TATP, volume 25)

Abstract

The transfer of chemical components that, when in solutions, have no effect on the physical properties of aquifer materials and groundwater, is inseparable from the groundwater flow. Their advective transport involves micro- and macrodispersion processes, which control the extent of solute dispersion in homogeneous and heterogeneous aquifers. In this chapter, we will consider the migration models that describe the motion of solutions miscible with groundwater in homogeneous aquifers. The solute migration processes in heterogeneous (stratified and fracturedporous) systems will be discussed in separate chapters.

Keywords

Groundwater Flow Groundwater Vulnerability Liquid Radioactive Waste Tritium Concentration Radioactive Waste 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aggarwal PK, Kroehlich K, Kulkarni KM (2004) Nuclear techniques in groundwater investigations. In: Kovalevsky VS, Kruserman GP, Rushton KR (eds) Grounwater studies. An international guide for hydrogeological investigations IHP-VI. Ser. on Ground Water N 3Google Scholar
  2. Akulov YuA, Mamyrin BA (2004) Atomic effects in tritium beta decay and their role in determining the ratio GA/GV and the lifetime of the free neutron. Phys At Nucl 67:464—469Google Scholar
  3. Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and paleoclimatic trends. J Hydrol 41:233—252Google Scholar
  4. Bateman H, Erdelyi A (1954) Tables of integral transforms, vol 1. McGraw-Hill, New YorkGoogle Scholar
  5. Bethke CM, Johnson TM (2008) Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci 36:121—152Google Scholar
  6. Bolin B, Rohde H (1973) A note on the concepts of age distribution and transit time in natural reservoirs. Tellus 25(1):58—62Google Scholar
  7. Busenberg E, Plummer LN (2006) Potential use of other atmospheric gases. In: Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna, pp 183—190Google Scholar
  8. Busenberg E, Plummer LN (2008) Dating groundwater with trifluoromethyl sulfurpentafluoride (SF5CF3), sulfur hexafluoride (SF6), CF3Cl (CFC-13), and CF2Cl2 (CFC-12). Water Resour Res. doi:10.1029/2007WR006150, W02431Google Scholar
  9. Castro MC, Stute M, Schlosser P (2000) Comparison of 4He ages and 14 C ages in simple aquifer systems: implications for groundwater flow and chronologies. Appl Geochem 15:1137—1167Google Scholar
  10. Clark ID, Fritz P (1997) Environmental isotopes in hydrology. Lewis, Boca RatonGoogle Scholar
  11. Cook PG, Solomon DK, Plummer LN et al (1995) Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer. Water Resour Res 31:425—434Google Scholar
  12. Cornaton F, Perrochet P (2006) Groundwater age, life expectancy and transit time distributions in advective—dispersive systems: 1 Generalized reservoir theory. Adv Water Resour 29:1267—1291Google Scholar
  13. Doetsch G (1967) Anleitung zum praktischen gebrauch der Laplace-transformation und der Z-transformation. R. Oldenbourg, MonchenGoogle Scholar
  14. Duffy CJ, Gelhar LW (1985) A frequency domain approach to water quality modeling in groundwater: theory. Water Resour Res 21:1175—1184Google Scholar
  15. Edmunds WM (2005) Contribution of isotopic and nuclear tracers to study of groundwaters. In: Aggarwal PK, Gat JR, Froehlich KFO (eds) Isotopes in the water cycle: past, present and future of a developing science. IEA, Dordrecht, pp 171—192Google Scholar
  16. Ekwurzel B, Schlosser P, Smetthie WM et al (1994) Dating of shallow groundwater — comparison of the transient tracers 3 H/3He, chlorofluorocarbons, and 85Kr. Water Resour Res 30:1693—1708Google Scholar
  17. Eriksson E (1961) Natural reservoirs and their characteristics. Geofis Int 1:27—43Google Scholar
  18. Eriksson E (1971) Compartment models and reservoir theory. Annu Rev Ecol Syst 2:67—84Google Scholar
  19. Etcheverry D, Perrochet P (2000) Direct simulation of groundwater transit-time distributions using the reservoir theory. Hydrogeol J 8:200—208Google Scholar
  20. Gelhar LW, Wilson JL (1974) Ground-water quality modeling. Ground Water 12:399—408Google Scholar
  21. Goode DJ, Busenberg E, Plummer LN et al (1999) CFC?s in the unsaturated zone and in shallow ground water at Mirror Lake, New Hampshire. In: Morganwalp DW, Buxton HT (eds) USGS toxic substances hydrology program. Proceedings of the technical meeting, Charleston, March 8—12, 1999. USGS Water-Resources Investigations Report 99-4018 C. Vol. 3 of 3, Subsurface contamination from point sources, pp 809—820Google Scholar
  22. Haitjema HM (1995) On the residence time distribution in idealized groundwatershed. J Hydrol 172:127—146Google Scholar
  23. Han LF, Gröning M, Plummer LN et al (2006) Comparison of the CFC technique with other techniques (3 H, 3 H/3He, 85Kr). In: Use of chlorofluorocarbons in hydrology: A guidebook. International Atomic Energy Agency, Vienna, pp 191—198Google Scholar
  24. Happell JD, Price RM, Top Z et al (2003) Evidence for the removal of CFC-11, CFC-12, and CFC-113 at the groundwater-surface water interface in the Everglades. J Hydrol 279:94—105Google Scholar
  25. Hinsby K (2007) Environmental tracers, groundwater age and vulnerability. Groundwater resources in buried valleys. In: Kirsch R, Rumpel H-M, Scheer W (eds) A challenge for geosciences. Leibniz Institute for Applied Geosciences (GGA-Institut), Hannover, pp 141—148Google Scholar
  26. Kazemi GA, Lehr JH, Perrochet P (2006) Groundwater age. Wiley, HobokenGoogle Scholar
  27. Kirchner JW, Feng X, Neal C (2000) Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403:524—527Google Scholar
  28. Kresic N (2007) Hydrogeology and groundwater modeling, 2nd edn. CRC Press/Taylor & Francis, New YorkGoogle Scholar
  29. Kulongoski JT, Hilton DR, Izbicki JA (2005) Source and movement of helium in the eastern Morongo groundwater Basin: the influence of regional tectonics on crustal and mantle helium fluxes. Geochim Cosmochim Acta 69:3857—3872Google Scholar
  30. Kulongoski JT, Hilton DR, Cresswell RG et al (2008) (2008) Helium-4 characteristics of groundwaters from Central Australia: comparative chronology with chlorine-36 and carbon-14 dating techniques. J Hydrol 348:176—194Google Scholar
  31. Makhonko KP (2002) Behavior of products of nuclear tests in atmosphere. Hydrometeoizdat, Saint Petersburg (In Russian)Google Scholar
  32. Maloszewski P, Zuber A (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability. J Hydrol 57:207—231Google Scholar
  33. Maloszewski P, Zuber A (1993) Principles and practice of calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers. Adv Water Res 16:173—190Google Scholar
  34. Martel DJ, Deak J, Dovenyi P et al (1989) Leakage of helium from the Pannonian Basin. Nature 342:908—912Google Scholar
  35. Mattle N, Kinzelbach W, Beyerle U (2001) Exploring an aquifer system by integrating hydraulic, hydrogeologic and environmental tracer data in a three-dimensional hydrodynamic transport model. J Hydrol 242:183—196Google Scholar
  36. Mazor E (1972) Paleotemperatures and other hydrological parameters deduced from noble gases dissolved in groundwater, Jordan Rift Valley, Israel. Geochim Cosmochim Acta 36:1321—1336Google Scholar
  37. Mazor E (2004) Chemical and isotopic groundwater hydrology. 3rd edn. Marcel Dekker, New YorkGoogle Scholar
  38. McGuire KJ, McDonnell JJ (2006) A review and evaluation of catchment transit time modeling. J Hydrol 330(3—4):543—563Google Scholar
  39. Mook WG (2000) Introduction: theory, methods, review. In: Mook WG (ed) Environmental isotopes in the hydrological cycle. Principles and applications, vol I. UNESCO/IAEA, ParisGoogle Scholar
  40. Plummer LN (2005) Dating of young groundwater. In: Aggarwal PK, Gat JR, Froehlich KHO (eds) Isotopes in the water cycle: past, present and future of a developing science. IEA, Paris, pp 193—218, Printed in the NetherlandsGoogle Scholar
  41. Plummer LN, Busenberg E (2006) Chlorofluorocarbons in aquatic environments. In: Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna, pp 1—29Google Scholar
  42. Polyanin AD, Zaitsev VF, Moussiaux A (2002) Handbook of first order partial differential equations. Taylor & Francis, LondonGoogle Scholar
  43. Pozdniakov SP, Bakshevskay VA, Zubkov AA (2005) Modeling of waste injection in heterogeneous sandy clay formation. In: Tsang C-F, Apps JA (eds) Underground injection science and technology. Elsevier, Amsterdam, pp 203—219Google Scholar
  44. Raats PAC (1978) Convective transport of solutes by steady flows. I general theory. Agr Water Manage I:201—218Google Scholar
  45. Raats PAC (1984) Accumulation and transport of water and solutes in the saturated and unsaturated zones. In: Eriksson E (ed) Hydrochemical balances of freshwater systems. Proceedings of a symposium held at Uppsala, September 1984. Publ no 150, pp 343—357Google Scholar
  46. Reilly TE, Plummer LN, Phillips PJ, Busenberg E (1994) The use of simulation and multiple environmental tracers to quantify ground-water flow in a shallow aquifer. Water Resour Res 30:421—433Google Scholar
  47. Rumynin VG, Konosavsky PK, Hoehn E (2005a) Experimental and modeling study of adsorption-desorption processes with application to a deep-well injection radioactive waste disposal site. J Contam Hydrol 76:19—46Google Scholar
  48. Rumynin VG, Sindalovskiy LN, Konosavsky PK et al (2005b) A review of the studies of radionuclide adsorption/desorption with application to radioactive waste disposal sites in the Russian Federation. In: Tsang C-F, Apps JA (eds) Underground injection science and technology. Elsevier, Amsterdam, pp 273—315Google Scholar
  49. Rybalchenko AI, Pimenov MK, Kostin PP et al (1998) Deep injection disposal of liquid radioactive waste in Russia. Foley MG and Ballou LMG (eds). Battelle Press, ColumbusGoogle Scholar
  50. Sato S, Otsuka T, Kuroda Y et al (2001) Diffusion of helium in water-saturated, compacted sodium montmorillonite. J Nucl Sci Technol 38:577—580Google Scholar
  51. Shestakov VM, Kuvaev AA, Lekhov AV (2002) Flow and transport modeling of liquid radioactive waste injection using data from the Siberian Chemical Plant injection site. Environ Geol 42:214—221Google Scholar
  52. Singh VP (2002) Is hydrology kinematics? Hydrol Process 16:667—716, John WileyGoogle Scholar
  53. Smethie WM Jr, Solomon DK, Schiff SL et al (1992) Tracing groundwater flow in the borden aquifer using krypton-85. J Hydrol 130:279—297Google Scholar
  54. Solomon DK, Sudicky EA (1991) Tritium and helium-3 isotope ratios for direct estimation of spatial variations in groundwater recharge. Water Resour Res 27:2309—2319Google Scholar
  55. Solomon DK, Schiff SL, Poreda RJ, Clarke WB (1993) A validation of the 3 H/3He method for determining groundwater recharge. Water Resour Res 29:2951—2962Google Scholar
  56. Solomon DK, Cook PG, Plummer LN (2006) Models of groundwater ages and residence times. Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna, pp 73—88Google Scholar
  57. Stute M, Sonntage C, Schlosser P et al (1992) Helium in deep circulating groundwater in the Great Hungarian Plain: flow dynamics and crustal and mantle helium fluxes. Geochim Cosmochim Acta 55:2051—2067Google Scholar
  58. Tokarev IV, Zubkov AA, Rumynin VG et al (2005) Origin of high 234U/238U ratio in post-permafrost aquifers. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment. Mining impact and consequences. Springer, Freiberg, pp 847—856Google Scholar
  59. Tokarev IV, Zubkov AA, Rumynin VG et al (2009a) Assessment of the long-term safety of radioactive waste disposal: 1 Paleoreconstruction of groundwater formation conditions. Water Resour RAS 36(2):206—213Google Scholar
  60. Tokarev IV, Zubkov AA, Rumynin VG et al (2009b) Assessment of the long-term safety of radioactive waste disposal: 2 Isotopic study of water exchange in a multilayer system. Water Resour RAS 36(3):339—350Google Scholar
  61. Tolstikhin IN, Kamensky IL (1969) Determination of groundwater age by the T—3He method. Geochem Int 6:810—811Google Scholar
  62. Torgersen T, Clarke WB (1985) Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim Cosmochim Acta 49:1211—1218Google Scholar
  63. Tosaki Y, Tase N, Massmann G et al (2007) Application of 36Cl as a dating tool for modern groundwater. Nucl Instr Meth Phys Res B 259:479—485Google Scholar
  64. Weiss RF (1971) The solubility of helium and neon argon in water and seawater. J Chem Eng Data 16:235—241Google Scholar
  65. Zoellmann K, Kinzelbach W, Fulda C (2001) Environmental tracer transport (3 H and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. J Hydrol 240:187—205Google Scholar
  66. Zuber A (1986) Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. Handbook of environmental isotope geochemistry. In: Fritz P, Fontes JC (eds) The terrestrial environment, vol 2. Elsevier, Amsterdam, pp 1—59Google Scholar
  67. Zuber A, Maloszewski P, Campana ME et al (2000) Modelling. In: Mook WG (ed) Environmental isotopes in the hydrological cycle. Principles and applications, vol VI. UNESCO/IAEA, ParisGoogle Scholar
  68. Zubkov AA, Ryabov AS, Sukhorukov VA et al (2005) Results of long-term deet liquid radioactive waste injection site operation at the Siberian Chemical Combine. In: Tsang C-F, Apps JA (eds) Underground injection science and technology. Elsevier, Amsterdam, pp 487—500Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Geological DepartmentThe Russian Academy of Sciences Institute of Environmental Geology Saint Petersburg Division Saint Petersburg State UniversitySt. PetersburgRussian Federation

Personalised recommendations