Ecological Functions and Adaptations of the Elasmobranch Electrosense

  • Timothy C. Tricas
  • Joseph A. Sisneros


Sharks and rays have a long evolutionary history as major predators in marine ecosystems, but the biological functions and selective pressures that shape the evolution of their ampullary electrosensory system are poorly known. The ampulla of Lorenzini is the functional electrosensory unit that consists of a small subdermal ampulla and a canal that projects to a surface pore on the head or pectoral fins. The sensory epithelium of the ampulla wall detects differences between the potential at the skin pore and internal potential of the animal, and stimulates neural transmission of information about the physical features of an external field to the brain. Natural weak electric stimuli include polar fields from bioelectric sources and induced fields from physical sources in the environment. Neurophysiological studies show that the ampullary electrosense responds to electric field gradients as low as 20 nV/cm, and behav- ioral studies show responses to gradients of 1-5 nV/cm. Elasmobranch fishes show behavioral responses to bioelectric stimuli produced by natural prey, mates, consexuals and potential predators. Numerous models exist for electrosensory navigation, but they remain to be rigorously tested. Recent work shows age-dependent changes in the response properties of the electrosense among embryo, juvenile and adult stages and are proposed to reflect ontogenetic adaptations to their changing environments. In addition, the electrosense response properties are seasonally modified by the periodic expression of gonadal steroids and may serve important modulation of sensory function during reproductive behaviors. Future work should continue to investigate different biological contexts in which the electrosense is used by elasmobranch fishes, and to test the selective forces that may have shaped the evolution of this remark- able sensory system.

Key words

Ampulla of Lorenzini Behavior Elasmobranch Electroreception Neuroecology Ray Shark Sensory Biology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrianov G.N., Broun G.R., Ilyinsky O.B., Muraveiko V.M. (1984) Frequency characteristics of skate electroreceptive central neurons responding to electric and magnetic stimulation, Neurophysiology 16: 365–376.Google Scholar
  2. Arnold A.E, Gorski R.A. (1984) Gonadal steroid induction of structural sex differences in the central nervous system, Annual Rev. Neuroci. 7: 413–442.CrossRefGoogle Scholar
  3. Bennett, M.V.L, Clussin W.T. (1977) Physiology of the ampulla of Lorenzini, the electroreceptor of elasmobranchs, in: Sensory biology of sharks, skates and rays, Hodgson E.S., Mathewson R.R. (Eds.) Office of Naval Research, Arlington, Virginia, pp. 483–506.Google Scholar
  4. Blonder B.I., Alevizon W.S. (1988) Prey discrimination and electroreception in the stingray Dasyatis sabina, Copeia 1988: 33–36.CrossRefGoogle Scholar
  5. Bratton B.O., Ayers J.L. (1987) Observations on the electric discharge of two skate species (Chondrichthyes: Rajidae) and its relationship to behavior, Environ. Biol. Fishes 20: 241–254.Google Scholar
  6. Bullock T.H., Heligenberg W. (1986) Electroreception, John Wiley and Sons, New York.Google Scholar
  7. Cox D.L., Koob T.J. (1993) Prédation on elasmobranch eggs, Environ. Biol. Fishes 38: 117–125.CrossRefGoogle Scholar
  8. Haine O.S., Ridd P.V., Rowe R.J. (2001) Range of electrosensory detection of prey by Carcharhinus melanopterus and Himantura granulata, Mar. Freswater Res. 52: 291–296.CrossRefGoogle Scholar
  9. Kajiura S.M., Holland K.N. (2002) Electroreception in juvenile scalloped hammerhead and sandbar sharks, J. Exp. Biol. 205: 3609–3621.PubMedGoogle Scholar
  10. Kajiura S.M., Sebastian, A., Tricas T.C. (2000) Dermal bite wounds as indicators of reproductive seasonality and behaviour in the Atlantic stingray, Dasyatis sabina, Environ. Biol. Fishes: 58: 23–31.CrossRefGoogle Scholar
  11. Kalmijn A.J. (1971) The electric sense of sharks and rays, J. Exp. Biol. 55: 371–383.PubMedGoogle Scholar
  12. Kalmijn A.J. (1974) The detection of electric fields from inanimate and animate sources other than electric organs, in: Handbook of Sensory Physiology (Vol. 3), Fessard A. (Ed.) Springer-Verlag, New York, pp. 147–200.Google Scholar
  13. Kalmijn A.J. (1981) Biophysics of geomagnetic field detection, IEEE Trans. Magnetics MAG 17: 1113–1124.CrossRefGoogle Scholar
  14. Kalmijn A.J. (1982) Electric and magnetic field detection in elasmobranch fishes, Science 218: 916–918.PubMedCrossRefGoogle Scholar
  15. Kalmijn A.J. (1984) Theory of electromagnetic orientation: a further analysis, in: Comparative Physiology of Sensory Systems, Bolis A., Keynes R.D., Madrell S.H.P. (Eds.) Cambridge University Press, Cambridge, pp. 525–559.Google Scholar
  16. Kalmijn A.J. (1988) Detection of weak electric fields, in: Sensory Biology of Aquatic Animals. Atema J., Fay R.R., Popper A.N., Tavolga W.N. (Eds.) Springer-Verlag, New York, pp. 151–186.CrossRefGoogle Scholar
  17. Kelly M.J. (1982) Electrical effects of steroids in neurons, in: Hormonally active brain peptides, McKerns K.W., Pantic B. (Eds.) Plenum Press, New York, pp. 253–265.CrossRefGoogle Scholar
  18. Klimley A.P. (1993) Highly directional swimming by scalloped hammerhead sharks, Sphyrna leweni and subsurface irradiance, temperature, bathymetry, and geomagnetic field, Mar. Biol. 117: 1–22.CrossRefGoogle Scholar
  19. Lowe C.G., Bray R.N., Nelson D.R. (1994) Feeding and associated electrical behavior of the Pacific electric ray Torpedo californica in the field, Mar. Biol. 120: 161–169.Google Scholar
  20. Luer C.A., Gilbert PW. (1985) Mating behavior, egg deposition, incubation period, and hatching in the clearnose skate, Raja eglanteria, Environ. Biol. Fishes 13: 161–171.CrossRefGoogle Scholar
  21. Maruska K.P, Cowie E.G., Tricas T.C. (1996) Periodic gonadal activity and protracted mating in elasmobranch fishes, J. Exp. Zool. 276: 219–232.CrossRefGoogle Scholar
  22. Mikhailenko N.A. (1971) Biological significance and dynamics of electrical discharges in weak electric fishes of the Black Sea (in Russian), Zool. Zh. 50: 1347–1352.Google Scholar
  23. Montgomery J.C. (1984) Frequency response characteristics of primary and secondary neurons in the electrosensory neurons in the electrosensory system of the thornback ray, Comp. Biochem. Physiol. 79A: 189–195.CrossRefGoogle Scholar
  24. Montgomery J.C, Bodznick D. (1993) Hindbrain circuitry mediating common-mode suppression of ventilatory reafference in the electrosensory system of the little skate, Raja erinacea, J. Exp. Biol. 183: 203–315.Google Scholar
  25. Mortenson J., Whitaker R.H. (1973) Electrical discharges in free swimming female winter skates (Raja ocellata), Am Zool. 13: 1266.Google Scholar
  26. Murray R.W., Potts T.W. (1961) The composition of the endolymph and other fluids of elasmobranchs, Comp. Biochem. Physio. 2: 65–75.CrossRefGoogle Scholar
  27. Murray R.W. (1962) The response of the ampullae of Lorenzini in elasmobranchs to electrical stimulation, J. Exp. Biol. 39: 119–128.PubMedGoogle Scholar
  28. New J.G. (1990) Medullary electrosensory processing in the little skate. I. Response characteristics of neurons in the dorsal octavolateralis nucleus, J. Comp. Physiol. A 167: 285–294.PubMedCrossRefGoogle Scholar
  29. New J.G. (1994) Electric organ discharge and electrosensory reafference in skates, Biol. Bull. 187: 64–75.PubMedCrossRefGoogle Scholar
  30. New J.G., Tricas T.C. (1998) Electroreceptors and Magnetoreceptors: Morphology and Function, in: Cell Physiology Source Book, Sperlakis N. (Ed.) 2nd ed., Academic Press, San Diego, pp. 741–758.Google Scholar
  31. Obara S., Benett M.V.L. (1972) Mode of operation of ampullae of Lorenzini of the skate, Raja, J. Gen. Physiol. 60: 534–557.PubMedCrossRefGoogle Scholar
  32. Pals N., Valentijn P., Verwey D. (1982a) Orientation reactions of the dogfish, Scyliorhinus canicula, to local electric fields, Neth. J. Zool. 32: 495–512.CrossRefGoogle Scholar
  33. Pals N., Peters R.C., Schoenhage A.A.C. (1982b) Local geo-electric fields at the bottom of the sea and their relevance for electrosensitive fish, Neth. J. Zool. 32: 479–494.Google Scholar
  34. Paulin M.G. (1995) Electroreception and the compass sense of sharks, J. Theor. Biol. 174: 325–339.CrossRefGoogle Scholar
  35. Peters R.C., Evers H.P. (1985) Frequency selectivity in the ampullary system of an elasmobranch fish (Scyliorhinus canicula), J. Exp. Biol. 118: 99–109.Google Scholar
  36. Raschi W. (1986) A morphological analysis of the ampullae of Lorenzini in selected skates (Pisces, Rajoidei), J. Morph. 189: 225–247.CrossRefGoogle Scholar
  37. Roberts B.L., Meredith G.E. (1989) The efferent system, in: The Mechanosensory Lateral Line, Coombs S., Görner P., Münz H., (Eds.) Springer-Verlag, New York, pp. 445–459.CrossRefGoogle Scholar
  38. Sisneros J.A., Tricas T.C. (2000) Androgen-induced changes in the response dynamics of ampullary electrosensory primary afferent neurons, J. Neurosci. 20: 8586–8595.PubMedGoogle Scholar
  39. Sisneros J.A., Tricas T.C. (2002a) Ontogenetic changes in the response properties of the peripheral electrosensory system in the Atlantic stingray (Dasyatis sabina), Brain, Behav. Evol. 59: 130–140.CrossRefGoogle Scholar
  40. Sisneros J.A., Tricas T.C. (2002b) Neuroethology and life history adaptations of the elasmobranch electric sense, J. Physiol. (Paris), 96: 379–389.CrossRefGoogle Scholar
  41. Sisneros J.A., Tricas T.C., Luer C.A. (1998) Response properties and biological function of the skate electrosensory system during ontogeny, J. Comp. Physiol. A 183: 87–99.PubMedCrossRefGoogle Scholar
  42. Tricas T.C. (1982) Bioelectric-mediated predation by swell sharks, Cephaloscyllium ventriosum, Copeia 1982: 948–952.CrossRefGoogle Scholar
  43. Tricas T.C. (2001) The neuroecology of the elasmobranch electrosensory world: why peripheral morphology shapes behavior, Environ. Biol. Fishes 60: 77–92.CrossRefGoogle Scholar
  44. Tricas T.C., New J.G. (1998) Sensitivity and response dynamics of electrosensory primary afferent neurons to near threshold fields in the round stingray, J. Comp. Physiol. A 182: 89–101.PubMedCrossRefGoogle Scholar
  45. Tricas T.C., Maruska K.P, Rasmussen L.E.L. (2000) Annual cycles of steroid hormone production, gonad development, and reproductive behavior in the Atlantic stingray, Gen. Comp. Endocrinol. 118: 209–225.PubMedCrossRefGoogle Scholar
  46. Tricas T.C., Michael S.W., Sisneros J.A. (1995) Electrosensory optimization to conspecific phasic signals for mating, Neurosci. Lett. 202: 29–131.CrossRefGoogle Scholar
  47. Waltman B. (1966) Electrical properties and fine structure of the ampullary canals of Lorenzini, Acta Physiol. Scand. 66, Suppl. 264: 1–60.Google Scholar
  48. Wilkens L.A., Russell D.F., Pei, X., Gurgens C. (1997) The paddlefish rostrum functions as an electrosensory antenna in plankton feeding, Proc. R. Soc. Lond. B Biol. Sci. 264: 1723–1729.CrossRefGoogle Scholar
  49. Zakon H.H.(1988) The electroreceptors: diversity in structure and function, in: Sensory Biology of Aquatic Animals, Atema, J., Fay R.R., Popper A.N., Tavolga W.N. (Eds.) Springer-Verlag, New York, pp. 151–186.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Timothy C. Tricas
    • 1
  • Joseph A. Sisneros
    • 2
  1. 1.Department of Zoology and Hawaii Institute of Marine BiologyUniversity of HawaiiHonoluluUSA
  2. 2.Department of Neurobiology and BehaviorCornell UniversityIthacaUSA

Personalised recommendations