Skip to main content

Immune function of children on dialysis

  • Chapter
Pediatric Dialysis

Abstract

Children with chronic renal failure (CRF) are at high risk for infectious complications. This can be attributed to the uremic state itself but also to the dialysis treatment. Peritoneal dialysis (PD) is the most commonly used method of pediatric dialysis because of its safety and simplicity. However, peritonitis remains one of the major complications of this treatment. The most common reasons for dialysis modality termination are infections when the child is not transplanted1. Nearly 50% of children have had at least one peritonitis episode at the end of the first year on PD. The standardized mortality rate remains high in children with end-stage renal disease (ESRD)1,2. The younger the child the higher the mortality risk. The primary reported causes of death in ESRD children are cerebro- and cardiovascular disease and infections1,2. The treatment and the prevention of infections are important elements in the care of pediatric dialysis patients, both for reduction of mortality and morbidity, and also for preservation of the peritoneal membrane function. Previous reports have shown that the incidence of peritonitis in children is higher than that found in adults34. Furthermore, it has been demonstrated that infants and children up to 6 years of age develop peritonitis more frequently than older children1. Besides technical causes for developing peritonitis in PD children, disturbances in the local intra-peritoneal, or systemic host defense might be involved in the individual infectious susceptibility5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warady BA, Sullivan EK, Alexander SR. Lessons from the peritoneal dialysis patient database: a report of the North American Pediatric Renal Transplant Cooperative Study. Kidney Int 1996;53:S68–71.

    CAS  Google Scholar 

  2. Groothoff JW, Gruppen MP, Offringa M et al. Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study. Kidney Int. 2002;61:621–9.

    PubMed  Google Scholar 

  3. Edefonti A, Consalvo G, Pappalettera M. Infectious complications in pediatric patients treated with chronic peritoneal dialysis (CPD). Perit Dial Int. 1996;16(Suppl 1):S543–7.

    PubMed  Google Scholar 

  4. Howard RL, Millspaugh J, Teitelbaum I. Adult and pediatric peritonitis rates in a home dialysis program: comparison of continuous ambulatory and continuous cycling peritoneal dialysis. Am J Kidney Dis. 1990;16:469–72.

    PubMed  CAS  Google Scholar 

  5. Cameron JS. Host defences in continuous ambulatory peritoneal dialysis and the genesis of peritonitis Pediatr Nephrol. 1995;9:647–62.

    PubMed  CAS  Google Scholar 

  6. Medzhitov R, Janeway C. Innate immunity. N Engl J Med. 2000;343:338–44.

    PubMed  CAS  Google Scholar 

  7. Delves PJ, Roitt IM. The immune system. First of two parts. N Engl J Med. 2000;343:37–49.

    PubMed  CAS  Google Scholar 

  8. Parham P. The body’s defenses against infection. In: Parham P, editor. The Immune System, 1st edn, New York, London: Garlands Publishing/Current Trends, 2000: pp. 201–40.

    Google Scholar 

  9. Rook G, Balkwill F. Cell-mediated immune reactions. In: Roitt I, Brostoff J, Male D, editors. Immunology, 5th edn. London: Mosby, 1998: pp. 121–38.

    Google Scholar 

  10. Rook G. Immunity to bacteria and fungi. In: Roitt I, Brostoff J, Male D, editors. Immunology, 5th edn, London: Mosby, 1998: pp. 229–42.

    Google Scholar 

  11. Kawakami K, Parker DC. Differences between T helper cell type I (Th1) and Th2 cell lines in signalling pathways for induction of contact-dependent T-cell help. Eur J Immunol. 1992;22:85–93.

    PubMed  CAS  Google Scholar 

  12. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Thl, Th2 and more. Immunol Today. 1996;17:138–46.

    PubMed  CAS  Google Scholar 

  13. Coffman RL. Mechanisms of helper T-cell regulation of B-cell activity. Ann NY Acad Sci. 1993;681:25–8.

    PubMed  CAS  Google Scholar 

  14. Parham P. The development of B lymphocytes. In: Parham P, editor. The Immune System, 1st edn. New York, London: Garland Publishing/Current Trends, 2000: pp. 85–107.

    Google Scholar 

  15. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302:575–81.

    PubMed  CAS  Google Scholar 

  16. Alt FW, Blackwell TK, Yancopoulos GD. Development of the primary antibody repertoire. Science. 1987;238:1079–87.

    PubMed  CAS  Google Scholar 

  17. MacLennan IC. Germinal centers. Annu Rev Immunol. 1994;12:117–39.

    PubMed  CAS  Google Scholar 

  18. Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. Science. 1996;272:54–60.

    PubMed  CAS  Google Scholar 

  19. Foy TM, Laman JD, Ledbetter JA et al. gp39-CD40 interactions are essential for germinal center formation and the development of B-cell memory. J Exp Med. 1994;180:157–63.

    PubMed  CAS  Google Scholar 

  20. Maurer D, Holter W, Majdic O et al. CD27 expression by a distinct subpopulation of human B lymphocytes. Eur J Immunol. 1990;20:2679–84.

    PubMed  CAS  Google Scholar 

  21. Agematsu K, Nagumo H, Yang FC et al. B-cell subpopulations separated by CD27 and crucial collaboration of CD27+ B-cells and helper T-cells in immunoglobulin production. Eur J Immunol. 1997;27:2073–79.

    PubMed  CAS  Google Scholar 

  22. Agematsu K. Memory B-cells and CD27. Histol Histopathol. 2000;15:573–6.

    PubMed  CAS  Google Scholar 

  23. Donze HH, Lue C, Julian BA et al. Human peritoneal B-1 cells and the influence of continuous ambulatory peritoneal dialysis on peritoneal and peripheral blood mononuclear cell (PBMC) composition and immunoglobulin levels. Clin Exp Immunol. 1997;109:356–61.

    PubMed  CAS  Google Scholar 

  24. Lydyard P, Grossi C. Development of the immune system. In: Roitt I, Brostoff J, Male D, editors. Immunology, 5th edn. London, Mosby; 1998: pp. 156–70.

    Google Scholar 

  25. Spits H, Lanier LL, Phillips JH. Development of human T and natural killer cells. Blood. 1995;85:2654–70.

    PubMed  CAS  Google Scholar 

  26. Banchereau J, Rousset F. Human B lymphocytes: phenotype, proliferation, and differentiation. Adv Immunol. 1992;52:125–262.

    PubMed  CAS  Google Scholar 

  27. Kohler PF, Farr RS. Elevation of cord over maternal IgG immunoglobulin: evidence for an active placental IgG transport. Nature. 1966;210:1070–1.

    PubMed  CAS  Google Scholar 

  28. Kobayashi RH, Hyman CJ, Stiehm ER. Immunologic maturation in an infant born to a mother with agammaglobulinemia. Am J Dis Child. 1980;134:942–4.

    PubMed  CAS  Google Scholar 

  29. Oxelius VA. IgG subclass levels in infancy and childhood. Acta Paediatr Scand. 1979;68:23–7.

    PubMed  CAS  Google Scholar 

  30. McKenzie SE, Schreiber AD. Fc gamma receptors in phagocytes. Curr Opin Hematol. 1998;5:16–21.

    PubMed  CAS  Google Scholar 

  31. Vidarsson G, Van de Winkel JGL. Fc receptor and complement receptor-mediated phagocytosis in host defence. Curr Opin Infect Dis. 1998;11:271–8.

    PubMed  CAS  Google Scholar 

  32. Kimberly RP, Salmon JE, Edberg JC. Receptors for immunoglobulin G. Molecular diversity and implications for disease. Arthritis Rheum. 1995;38:306–14.

    PubMed  CAS  Google Scholar 

  33. De Haas M, Vossebeld PJ, den Borne AE, Roos D. Fc gamma receptors of phagocytes. J Lab Clin Med. 1995;126:330–41.

    PubMed  Google Scholar 

  34. Daeron M. Structural bases of Fc gamma R functions. Int Rev Immunol. 1997;16:1–27.

    PubMed  CAS  Google Scholar 

  35. Schreiber AD, Rossman MD, Levinson AI. The immunobiology of human Fc gamma receptors on hematopoietic cells and tissue macrophages. Clin Immunol Immunopathol. 1992;62:S66–72.

    PubMed  CAS  Google Scholar 

  36. van de Winkel JG, Capel PJ. Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol Today. 1993;14:215–21.

    PubMed  Google Scholar 

  37. Rodriguez ME, van der Pol WL, Sanders LA, van de Winkel JG. Crucial role of FcgammaRIIa (CD32) in assessment of functional anti-Streptococcus pneumoniae antibody activity in human sera. J Infect Dis. 1999;179:423–33.

    PubMed  CAS  Google Scholar 

  38. Huizinga TW, van der Schoot CE, Jost C et al. The PI-linked receptor FcRIII is released on stimulation of neutrophils. Nature. 1988;333:667–9.

    PubMed  CAS  Google Scholar 

  39. Prodinger WM, Wurzner R, Erdei A, Dierich MP. Complement. In: Paul WE, editor. Fundamental Immunology, 4th edn. Philadelphia: Lippincott-Raven, 1999: pp. 979–85.

    Google Scholar 

  40. Lin CY, Huang TP. Serial cell-mediated immunological changes in terminal uremic patients on continuous ambulatory peritoneal dialysis therapy. Am J Nephrol. 1988;8:355–62.

    PubMed  CAS  Google Scholar 

  41. Deenitchina SS, Ando T, Okuda S et al. Cellular immunity in hemodialysis patients: a quantitative analysis of immune cell subsets by flow cytometry. Am J Nephrol. 1995;15:57–65.

    PubMed  CAS  Google Scholar 

  42. Chatenoud L, Herbelin A, Beaurain G et al. Immune deficiency of the uremic patient. Adv Nephrol Necker Hosp. 1990;19:259–74.

    PubMed  CAS  Google Scholar 

  43. Kelly CJ. T-cell function in chronic renal failure and dialysis. Blood Purif. 1994;12:36–41.

    PubMed  CAS  Google Scholar 

  44. Lewis SL, Kutvirt SG, Cooper CL et al. Characteristics of peripheral and peritoneal lymphocytes from continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1993;13(Suppl 2):S273–7.

    PubMed  Google Scholar 

  45. Cohen G, Haag-Weber M, Horl WH. Immune dysfunction in uremia. Kidney Int. 1997;52:S79–82.

    Google Scholar 

  46. Lewis SL, Bonner PN, Cooper CL. Prospective comparison of blood and peritoneal lymphocytes from continuous ambulatory peritoneal dialysis patients. J Clin Lab Immunol. 1992;37:3–19.

    PubMed  CAS  Google Scholar 

  47. Davies SJ, Suassuna J, Ogg CS et al. Activation of immunocompetent cells in the peritoneum of patients treated with CAPD. Kidney Int. 1989;36:661–8.

    PubMed  CAS  Google Scholar 

  48. Drachman R, Schlesinger M, Shapira H et al. The immune status of uraemic children/adolescents with chronic renal failure and renal replacement therapy. Pediatr Nephrol. 1989;3:305–8.

    PubMed  CAS  Google Scholar 

  49. Hisano S, Miyazaki C, Hatae K et al. Immune status of children on continuous peritoneal dialysis. Pediatr Nephrol. 1992;6:179–81.

    PubMed  CAS  Google Scholar 

  50. Bouts AHM, Out TA, Schroder CH et al. Characteristics of peripheral and peritoneal white blood cells in children with chronic renal failure, dialyzed or not. Perit Dial Int. 2000;20:748–56.

    PubMed  CAS  Google Scholar 

  51. Aksu N, Keskinoglu A, Erdogan H et al. Does immunologic status predict peritonitis in children treated with CAPD? Adv Perit Dial. 1998;14:243–6.

    PubMed  CAS  Google Scholar 

  52. Ensari C, Ekim M, Ikinciogullari A et al. Are uremic children immunologically compromised? Nephron. 2001;88:379–81.

    PubMed  CAS  Google Scholar 

  53. Aksu N, Keskinoglu A, Erdogan H et al. Does immunologic status predict peritonitis in children treated with CAPD? Adv Perit Dial. 1998;14:243–6.

    PubMed  CAS  Google Scholar 

  54. Albertazzi A, Cappelli P, Di Marco T et al. The natural history of uremic neuropathy. Contrib Nephrol. 1988;65:130–7.

    PubMed  CAS  Google Scholar 

  55. Fivush B A, Case B, May MW et al. Hypogammaglobulinemia in children undergoing continuous ambulatory peritoneal dialysis. Pediatr Nephrol. 1989;3:186–8.

    PubMed  CAS  Google Scholar 

  56. Bunchman T. Chronic dialysis in the infant less than 1 year of age. Pediatr Nephrol. 1995;9:S18–22.

    PubMed  Google Scholar 

  57. Schröder C, Bakkeren J, Weemaes C et al. IgG2 deficiency in young children treated with continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Int. 1989;9:261–5.

    PubMed  Google Scholar 

  58. Katz A, Kashtan CE, Greenberg LJ et al. Hypogammaglobulinemia in uremic infants receiving peritoneal dialysis. J Pediatr. 1990;117:258–61.

    PubMed  CAS  Google Scholar 

  59. Kemper MJ, Meyer-Jark T, Muller-Wiefel DE. IgG2 deficiency in uremic children is not restricted to peritoneal dialysis treatment. Pediatr Nephrol. 1997;11:684–6.

    PubMed  CAS  Google Scholar 

  60. Bouts AHM, Davin JC, Krediet RT et al. IgG and subclasses in children before and after starting peritoneal dialysis. Immunol Lett. 1997;56:333.

    Google Scholar 

  61. Poyrazoglu HM, Dusunsel R, Patiroglu T et al. Humoral immunity and frequency of peritonitis in chronic peritoneal dialysis patients. Pediatr Nephrol. 2002;17:85–90.

    PubMed  CAS  Google Scholar 

  62. Descamps-Latscha B, Chatenoud L. T-cells and B-cells in chronic renal failure. Semin Nephrol. 1996;16:183–191.

    PubMed  CAS  Google Scholar 

  63. Descamps-Latscha B, Herbelin A, Nguyen AT et al. Immune system dysregulation in uremia. Semin Nephrol. 1994;14:253–60.

    PubMed  CAS  Google Scholar 

  64. Preud’homme JL, Hanson LA. IgG subclass deficiency. Immunodefic Rev. 1990;2:129–49.

    CAS  Google Scholar 

  65. Kuijpers TW, Weening RS, Out TA. IgG subclass deficiencies and recurrent pyogenic infections, unresponsiveness against bacterial polysaccharide antigens. Allergol Immunopathol. 1992;20:28–34.

    CAS  Google Scholar 

  66. Krediet RT, Koomen GC, Vlug A et al. IgG subclasses in CAPD patients. Perit Dial Int. 1996;16:288–94.

    PubMed  CAS  Google Scholar 

  67. Kuizon B, Melocoton TL, Holloway M et al. Infectious and catheter-related complications in pediatric patients treated with peritoneal dialysis at a single institution. Pediatr Nephrol. 1995;9(Suppl):S12–17.

    PubMed  Google Scholar 

  68. McGregor SJ, Brock JH, Briggs JD et al. Relationship of IgG, C3 and transferrin with opsonising and bacteriostatic activity of peritoneal fluid from CAPD patients and the incidence of peritonitis. Nephrol Dial Transplant. 1987;2:551–556.

    PubMed  CAS  Google Scholar 

  69. Coles GA, Alobaidi HM, Topley N, Davies M. Opsonic activity of dialysis effluent predicts those at risk of Staphylococcus epidermidis peritonitis. Nephrol Dial Transplant. 1987;2:359–65.

    PubMed  CAS  Google Scholar 

  70. Carozzi S, Lamperi S. Peritonitis prevention in CAPD. Clin Nephrol. 1988;30(Suppl 1):S45–8.

    PubMed  Google Scholar 

  71. De Vecchi AF, Kopple JD, Young GA. Plasma and dialysate immunoglobulin G in continuous ambulatory peritoneal dialysis patients: a multicenter study. Am J Nephrol. 1990;10:451–6.

    PubMed  Google Scholar 

  72. Zemel D, Struijk DG, Krediet RT et al. No relationship between dialysate IgG and peritonitis incidence. Nephrol Dial Transplant. 1989;4:501–2.

    Google Scholar 

  73. De Vecchi A, Castelnovo C, Failla N et al. Clinical significance of peritoneal dialysate IgG levels in CAPD patients. Adv Perit Dial. 1990;6:98–101.

    PubMed  Google Scholar 

  74. Nielsen H, Espersen F, Kharazmi A et al. Specific opsonic activity for staphylococci in peritoneal dialysis effluent during continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 1992;20:372–5.

    Google Scholar 

  75. Dolhofer-Bliesener R, Gerbitz KD. Impairment by glycation of immunoglobulin G Fe fragment function. Scand J Clin Lab Invest. 1990;50:739–46.

    PubMed  CAS  Google Scholar 

  76. Davin JC, Bouts AHM, Krediet RT et al. IgG glycation and function during continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 1997;12:310–14.

    PubMed  CAS  Google Scholar 

  77. Bouts AHM, Davin JC, Krediet RT et al. Children with chronic renal failure have reduced number of memory B-cells. Blood Purif. 2002;20:517.

    Google Scholar 

  78. Meier P, Dayer E, Blanc E et al. Early T-cell activation correlates with expression of apoptosis markers in patients with end-stage renal disease. J Am Soc Nephrol. 2002;13:204–12.

    PubMed  CAS  Google Scholar 

  79. Raska KJ, Raskova J, Shea SM et al. T-cell subsets and cellular immunity in end-stage renal disease. Am J Med. 1983;75:734–40.

    PubMed  Google Scholar 

  80. Kurz P, Kohler H, Meuer S et al. Impaired cellular immune responses in chronic renal failure: evidence for a T-cell defect. Kidney Int. 1986;29:1209–14.

    PubMed  CAS  Google Scholar 

  81. Descamps-Latscha B. The immune system in end-stage renal disease. Curr. Opin. Nephrol Hypertens. 1993;2:883–91.

    PubMed  CAS  Google Scholar 

  82. Descamps-Latscha B, Jungers P. New molecular aspects of chronic uraemia and dialysis-related immunocompetent cell activation. Nephrol Dial Transplant. 1996;11(Suppl 2):121–4.

    PubMed  Google Scholar 

  83. Beaurain G, Naret C, Marcon L et al. In vivo T-cell preactivation in chronic uremic hemodialyzed and non-hemodialyzed patients. Kidney Int. 1989;36:636–44.

    PubMed  CAS  Google Scholar 

  84. Kamata K, Okubo M, Sada M. Immunosuppressive factors in uraemic sera are composed of both dialysable and non-dialysable components. Clin Exp Immunol. 1983;54:277–81.

    PubMed  CAS  Google Scholar 

  85. Meuer SC, Hauer M, Kurz P et al. Selective blockade of the antigen-receptor-mediated pathway of T-cell activation in patients with impaired primary immune responses. J Clin Invest. 1987;80:743–9.

    PubMed  CAS  Google Scholar 

  86. Tsakolos ND, Theoharides TC, Hendler ED et al. Immune defects in chronic renal impairment: evidence for defective regulation of lymphocyte response by macrophages from patients with chronic renal impairment on haemodialysis. Clin Exp Immunol. 1986;63:218–27.

    PubMed  CAS  Google Scholar 

  87. Girndt M, Sester M, Sester U et al. Molecular aspects of T-and B-cell function in uremia. Kidney Int. 2001;59:S206–11.

    Google Scholar 

  88. Girndt M, Kohler H, Schiedhelm-Weick E et al. T-cell activation defect in hemodialysis patients: evidence for a role of the B7/CD28 pathway. Kidney Int. 1993;55:359–65.

    Google Scholar 

  89. Descamps-Latscha B, Herbelin A, Nguyen AT et al. Balance between IL-1 beta, TNF-alpha, and their specific inhibitors in chronic renal failure and maintenance dialysis. Relationships with activation markers of T-cells, B-cells, and monocytes. J Immunol. 1995;154:882–92.

    PubMed  CAS  Google Scholar 

  90. Caruana RJ, Leffell MS, Lobel SA et al. Chronic T-lymphocyte activation in chronic renal failure: a study of hemodialysis, CAPD and pre-dialysis patients. Int J Artif Org. 1992;15:93–8.

    CAS  Google Scholar 

  91. Rabb H, Agosti SJ, Pollard S, Bittle PA et al. Activated and regulatory T lymphocyte populations in chronic hemodialysis patients. Am J Kidney Dis. 1994;24:443–52.

    PubMed  CAS  Google Scholar 

  92. Sester U, Sester M, Hauk M et al. T-cell activation follows Thl rather than Th2 pattern in haemodialysis patients. Nephrol Dial Transplant. 2000;15:1217–23.

    PubMed  CAS  Google Scholar 

  93. Bouts AHM, Davin JC, Krediet RT et al. Increased T-cell cytokine production in children with chronic renal failure normalizes after starting dialysis. Blood Purif. 2002;20:516.

    Google Scholar 

  94. Ferrante A, Beard LJ, Feldman RG. IgG subclass distribution of antibodies to bacterial and viral antigens. Pediatr Infect Dis J. 1990;9:S16–24.

    PubMed  CAS  Google Scholar 

  95. Fivush BA, Furth SL, Neu AM. Immunizations in children on PD: current guidelines and recommendations. Adv Perit Dial. 1995;11:270–73.

    PubMed  CAS  Google Scholar 

  96. Fivush BA, Neu AM. Immunization guidelines for pediatric renal disease. Semin Nephrol. 1998;18:256–63.

    PubMed  CAS  Google Scholar 

  97. Beaman M, Michael J, MacLennan IC et al. T-cell-independent and T-cell-dependent antibody responses in patients with chronic renal failure. Nephrol Dial Transplant. 1989;4:216–21.

    PubMed  CAS  Google Scholar 

  98. Drachman R, Isacsohn M, Rudensky B et al. Vaccination against hepatitis B in children and adolescent patients on dialysis. Nephrol Dial Transplant. 1989;4:372–4.

    PubMed  CAS  Google Scholar 

  99. Park MS. Factors increasing severity of peritonitis in long-term peritoneal dialysis patients. Adv Ren Replace Ther. 1998;5:185–93.

    PubMed  CAS  Google Scholar 

  100. Neu AM, Warady BA, Furth SL et al. Antibody levels to diphtheria, tetanus, and rubella in infants vaccinated while on PD: a Study of the Pediatric Peritoneal Dialysis Study Consortium. Adv Perit Dial. 1997;13:297–9.

    PubMed  CAS  Google Scholar 

  101. Schulman SL, Deforest A, Kaiser BA et al. Response to measles-mumps-rubella vaccine in children on dialysis. Pediatr Nephrol. 1992;6:187–9.

    PubMed  CAS  Google Scholar 

  102. Flynn JT, Frisch K, Kershaw DB et al. Response to early measles-mumps-rubella vaccination in infants with chronic renal failure and/or receiving peritoneal dialysis. Adv Perit Dial. 1999;15:269–72.

    PubMed  CAS  Google Scholar 

  103. Furth SL, Neu AM, Case B et al. Pneumococcal polysaccharide vaccine in children with chronic renal disease: a prospective study of antibody response and duration. J Pediatr. 1996;128:99–101.

    PubMed  CAS  Google Scholar 

  104. Fuchshuber A, Kuhnemund O, Keuth B et al. Pneumococcal vaccine in children and young adults with chronic renal disease. Nephrol Dial Transplant. 1996;11:468–73.

    PubMed  CAS  Google Scholar 

  105. Bouts AHM, Davin JC, Krediet RT et al. Impaired antibody response to pneumococcal polysaccharide vaccine in children with renal disease. Blood Purif. 2002;20:516.

    Google Scholar 

  106. Furth SL, Neu AM, McColley SA et al. Immune response to influenza vaccination in children with renal disease. Pediatr Nephrol 1995;9:566–8.

    PubMed  CAS  Google Scholar 

  107. Girndt M. Humoral immune responses in uremia and the role of IL-10. Blood Purif. 2002;20:485–8.

    PubMed  CAS  Google Scholar 

  108. Vanholder R, Ringoir S, Dhondt A et al. Phagocytosis in uremic and hemodialysis patients: a prospective and cross sectional study. Kidney Int. 1991;39:320–7.

    PubMed  CAS  Google Scholar 

  109. Descamps-Latscha B, Herbelin A. Long-term dialysis and cellular immunity: a critical survey. Kidney Int. 1993;41:S135–42.

    CAS  Google Scholar 

  110. Vanholder R, Ringoir S. Infectious morbidity and defects of phagocytic function in end-stage renal disease: a review. J Am Soc Nephrol. 1993;3:1541–54.

    PubMed  CAS  Google Scholar 

  111. Braun N. Expression of adhesion molecules and activation markers on lymphocytes and monocytes during hemodialysis. Blood Purif. 1997;15:61–76.

    PubMed  CAS  Google Scholar 

  112. Derfalvi B, Nemet K, Szalai C et al. In vitro effect of human recombinant growth hormone on lymphocyte and granulocyte function of healthy and uremic children. Immunol Lett. 1998;63:41–7.

    PubMed  CAS  Google Scholar 

  113. Wasik M, Blaim M, Kolewska D et al. Changes in the phagocytic cells in children treated with continuous ambulatory peritoneal dialysis. Arch Immunol Ther Exp. 1997;45:189–94.

    CAS  Google Scholar 

  114. Wallace PK, Howell AL, Fanger MW. Role of Fe gamma receptors in cancer and infectious disease. J Leukoc Biol. 1994;55:816–26.

    PubMed  CAS  Google Scholar 

  115. Nockher WA, Scherberich JE. Expanded CD14+ CD16+ monocyte subpopulation in patients with acute and chronic infections undergoing hemodialysis. Infect Immun. 1998;66:2782–90.

    PubMed  CAS  Google Scholar 

  116. Brauner A, Lu Y, Hallden G et al. Difference in the blood monocyte phenotype between uremic patients and healthy controls: its relation to monocyte differentiation into macrophages in the peritoneal cavity. Inflammation. 1998;22:55–66.

    PubMed  CAS  Google Scholar 

  117. Carcamo C, Fernandez-Castro M, Selgas R et al. Long-term continuous ambulatory peritoneal dialysis reduces the expression of CD11b, CD14, CD16, and CD64 on peritoneal macrophages. Perit Dial Int. 1996;16:582–589.

    PubMed  CAS  Google Scholar 

  118. Ruiz P, Gomez F, Schreiber AD. Impaired function of macrophage Fc gamma receptors in end-stage renal disease. N Engl J Med. 1990;322:717–22.

    PubMed  CAS  Google Scholar 

  119. Halma C, Daha MR, Feitsma RI et al. Does haemodialysis impair macrophage Fc receptor function? Nephrol Dial Transplant. 1992;7:618–622.

    PubMed  CAS  Google Scholar 

  120. Bouts AHM. Fcγ receptor expression on phagocytic cells in children with CRF. Perit Dial Int. 2000;20:112.

    Google Scholar 

  121. Bouts AHM, Davin JC, Krediet RT et al. IgG receptors on phagocytic cells in children with chronic renal failure. Blood Purif. 2002;20:516.

    Google Scholar 

  122. Bouts AHM, Davin JC, Monnens LA et al. Complement receptors in blood and dialysate of children on peritoneal dialysis. Blood Purif. 2002;20:515.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bouts, A.H.M., Davin, J.C. (2004). Immune function of children on dialysis. In: Warady, B.A., Schaefer, F.S., Fine, R.N., Alexander, S.R. (eds) Pediatric Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1031-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1031-3_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3770-9

  • Online ISBN: 978-94-007-1031-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics