Nonholonomic Field Theory of Vortices and Defect and their Physe Transitions

  • H. Kleinert
Conference paper
Part of the NATO Science Series book series (NAII, volume 127)

Abstract

The statistical mechanics of vortices in superfluids and superconductors, and the associated phase transitions, are described by functional integrals over nonholonomic fields.

Keywords

Partition Function Gauge Transformation Mass Term Gauge Field Bianchi Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Kleinert, Gauge fields in Condensed Matter, Vol. I: Superflow and Vortex Lines, Disorder Fields, Phase Transitions, Vol. II:Stresses and Defects, Differential Geometry, Crystal Defects, World Scientific, Singapore, 1989.MATHGoogle Scholar
  2. [2]
    H. Kleinen, Lett. Nuovo Cimento 35, 405 (1982). See also the more detailed discussion in Ref. [1], Vol I, Part 2, Section 13, where the final disorder theory was derived [see, in particular, Eq. (13.30)].Google Scholar
  3. [3]
    B.I. Halperin, T.C. Lubensky, and S. Ma, Phys. Rev. Lett. 32, 292 (1972).ADSCrossRefGoogle Scholar
  4. [4]
    M. Kiometzis, H. Kleinen, and A.MJ. Schakel, Phys. Rev. Lett. 73,,1975 (1994).ADSCrossRefGoogle Scholar
  5. [5]
    S. Mo, J. Hove, and A. Sudbo, The order of the metal to superconductor transition, (cond-mat/0109260).Google Scholar
  6. [6]
    M. Gabay and A. Kapitulnik, Phys. Rev. Lett. 71, 2138 (1993).ADSCrossRefGoogle Scholar
  7. [7]
    S.-C. Zhang, ibid., 2142 (1993).Google Scholar
  8. [8]
    M.T. Chen, J.M. Roessler, and J.M. Mochel, J. Low Temp. Phys. 89, 125 (1992).ADSCrossRefGoogle Scholar
  9. [9]
    Kleinen, H., Lett. Nuovo Cimento 35, 405 (1982).CrossRefGoogle Scholar
  10. [10]
    D. Nelson, Phys. Rev. B 18, 2318 (1978).ADSCrossRefGoogle Scholar
  11. [11]
    D. Nelson and B.I. Halperin, Phys. Rev. B 19, 2457 (1979).ADSGoogle Scholar
  12. [12]
    A.P. Young, ibid., 1855 (1979).Google Scholar
  13. [13]
    D. Nelson, Phys. Rev. B 26, 269 (1982).ADSGoogle Scholar
  14. [14]
    W. Janke and H. Kleinen, Phys. Lett. A 105, 134 (1984); Phys. Lett. A 114, 255 (1986).ADSCrossRefGoogle Scholar
  15. [15]
    W. Janke and H. Kleinen, Phys. Rev. Lett. 61, 2344 (1988).ADSCrossRefGoogle Scholar
  16. [16]
    H. Kleinen, Phys. Lett. A 130, 443 (1988).ADSCrossRefGoogle Scholar
  17. [17]
    H. Kleinen, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics World Scientific Publishing Co., Singapore 1990; extended German edition published by B.I.-Wissenschaftsverlag, Mannheim 1993.Google Scholar
  18. [18]
    P. Fiziev and H. Kleinen, New Action Principle for Classical Particle Trajectories In Spaces with Torsion, Berlin preprint 1993.Google Scholar
  19. [19]
    P. Fiziev and H. Kleinen, Action Principle for Euler Equations in Body System, Berlin preprint 1994.Google Scholar
  20. [20]
    H. Kleinen, Phys. Lett. A 130 (1988).Google Scholar
  21. [21]
    H. Kleinen and W. Miller, Phys. Rev. Lett. 56, 11 (1986); Phys. Rev. D 38, 1239(1988).ADSCrossRefGoogle Scholar
  22. [22]
    M. Kiometzis and A.MJ. Schakel, Int. J. Mod. Phys. B 7, 4271 (1993).ADSCrossRefGoogle Scholar
  23. [23]
    S. Elitzur, Phys. Rev. D 12, 3978 (1975).ADSCrossRefGoogle Scholar
  24. [24]
    P.A.M. Dirac, Principles of Quantum Mechanics, 4th ed., Clarendon, Cambridge 1981, Section 80.Google Scholar
  25. [25]
    J. Schwinger, Phys. Rev. 115, 721 (1959); 127, 324 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  26. [26]
    T. Kennedy and C. King, Phys. Rev. Lett. 55, 776 (1985); Comm. Math. Phys. 104, 327 (1986).ADSCrossRefGoogle Scholar
  27. [1]
    S. Elitzur, Phys. Rev. D 12, 3978 (1975).ADSCrossRefGoogle Scholar
  28. [2]
    P. A.M. Dirac, Principles of Quantum Mechanics, 4th ed., Clarendon, Cambridge 1981, Section 80Google Scholar
  29. [3]
    J. Schwinger, Phys. Rev. 115, 721 (1959); 127, 324 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  30. [4]
    M. Kiometzis and A.M.J. Schakel, Int. J. Mod. Phys. B 7, 4271 (1993).ADSCrossRefGoogle Scholar
  31. [5]
    H. Kleinen, Int. J. Mod. Phys. A7, 4693 (1992); Phys. Lett. B246, 127 (1990); Phys. Lett. B293, 168 (1992).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • H. Kleinert
    • 1
  1. 1.Institut fur Theoretische PhysikFreie Universitat BerlinBerlin

Personalised recommendations