Life in the Universe pp 9-16 | Cite as
The Beginning of Chemical Evolution Experiments
Abstract
In spite of the ongoing debate about the oldest morphological evidence of life, it is generally accepted by scientists that the first living beings emerged on Earth early in the history of the planet. However, our understanding of the processes that led to the emergence of life is also hindered by the lack of geological evidence of the prebiotic environment, i.e., we have no direct information on the chemical composition of the primitive atmosphere, the temperature of the planet, the pH of the primitive hydrosphere, and other conditions which may have been important for the origin of life. Hence, it is not surprising that this has led to intense debates and the formulation of different and even contradictory explanations of how life came into being.
Keywords
Water Mist Hydrogen Cyanide Miller Experiment Prebiotic Synthesis Laboratory SynthesisPreview
Unable to display preview. Download preview PDF.
Refrences
- Bada, J. L. and Lazcano, A. (2002) Miller revealed new ways to study the origin of life. Nature 416, 475.ADSCrossRefGoogle Scholar
- Bada, J. L. and Lazcano, A. (2003) Prebiotic soup—revisiting the Miller experiment. Science 300, 745–746.CrossRefGoogle Scholar
- Baudish, O. (1913) Ueber das CO2 fixation. Angew. Chem. 2, 612–616.CrossRefGoogle Scholar
- Garrison, W. M., Morrison, D. C., Hamilton, J. G., Benson, A. A., and Calvin, M. (1951) The reduction of carbon dioxide in aqueous solutions by ionizing radiation. Science 114, 416–418.ADSCrossRefGoogle Scholar
- Herrera, A. L. (1942) A new theory of the origin and nature of life. Science 96, 14.ADSCrossRefGoogle Scholar
- Klages, A. (1903) Ueber das methilamino-acetonitril. Berichte der Deutschen Chemischen Gesellschaft 36, 1506.CrossRefGoogle Scholar
- Lazcano, A. and Bada, J. L. (2003) The 1953 Stanley L. Miller experiment: fifty years of prebiotic organic chemistry. Origins Life Evol. Biosph. 33, 235–242.ADSCrossRefGoogle Scholar
- Ling, A. R. and Nanji, D. R. (1922) The synthesis of glycine from formaldehyde. Biochem. J. 16, 702–705.Google Scholar
- Lob, W. (1913) Uber das Verhalten des Formamids unter der Wirkung des stillen Entladung. Ein Beilrag zur Frage der Stickstoff-Assimilation. Bercfihte der Deutschen Chemischen Gesellschaft 46, 684–697.CrossRefGoogle Scholar
- Miller, S. L. (1953) A production of amino acids under possible primitive Earth conditions. Science 117, 528–529.ADSCrossRefGoogle Scholar
- Miller, S. L. (1955) Production of some organic compounds under possible primitive Earth conditions. J. Am. Chem. Soc. 77, 2351–2361.CrossRefGoogle Scholar
- Miller, S. L. (1974) The first laboratory synthesis of organic compounds under primitive Earth conditions, In Jerzy Neyman (ed.), The Heritage of Copernicus: theories “pleasing to the mind” (MIT Press, Cambridge), 228–242.Google Scholar
- Miller, S. L., Schopf, J. W., and Lazcano, A. (1997) Oparin’s “Origin of Life”: sixty years later. J. Mol. Evol. 44, 351–353.CrossRefGoogle Scholar
- Rabinovich, E. I. (1945) Photosynthesis. Vol I (Interscience, New York), pp. 61–98.Google Scholar
- Ring, D., Wolman, Y., Friedmann, N., and Miller, S. L. (1972) Prebiotic synthesis of hydrophobic and protein amino acids. Proc. Natl. Acad. Sci. USA 69, 765–768.ADSCrossRefGoogle Scholar
- Urey, H. C. (1952) On the early chemical history of the Earth and the origin of life. Proc. Natl. Acad. Sci. USA 38, 351–363.ADSCrossRefGoogle Scholar
- Wohler, F. (1828) Ueber das organische synthese. Ann. Physik 12, 253.ADSGoogle Scholar
- Wolman, Y., Haverland, W. J., and Miller, S. L. (1972) Nonprotein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proc. Natl. Acad. Sci. USA 69, 923–926.CrossRefGoogle Scholar