Studies of High Reynolds Number Turbulence in the Atmospheric Surface Layer Over The Salt Playa of Western Utah

  • J. C. Klewicki
  • M. M. Metzger
Conference paper
Part of the Fluid Mechanics and its Applications book series (FMIA, volume 74)

Abstract

The Surface Layer Turbulence and Environmental Science Test facility resides on the salt playa of Utah's west desert. A major intended use of this facility is to take advantage of the low speeds and large length scales of the atmospheric surface layer over extremely homogeneous terrain for the purpose of probing the detailed structure of high Reynolds number turbulence, and, in particular, boundary layer turbulence. The physical attributes of the site and the dedicated infrastructure and instrumentation at the facility are described. A particularly significant issue relates to the conditions under which the flow is near neutral stratification. Wall shear stress, mean velocity and Monin-Obukhov stability parameter measurements are used to explore this issue. A discussion is provided of some of the studies that have employed the facility. Potential future studies are identified.

Keywords

Wall Shear Stress High Reynolds Number Atmospheric Surface Layer Surface Shear Stress IUTAM Symposium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aivalis, K., Sreenivasan, K, Klewicki, J., and Biltoft, C. (2002). Temperature structure functions for air flow over a moderately-heated ground. Phys. Fluids, 14:2439.ADSCrossRefGoogle Scholar
  2. Fernando, H., Lee, S., Anderson, J., Princevac, M., Pardyjak, E., and Grossman-Clarke, S. (2001). Urban fluid mechanics: Air circulation and contaminant dispersion in cities. Env. Fluid Mech., 1:107.CrossRefGoogle Scholar
  3. Folz, A. (1997). An experimental study of the near-surface turbulence in the atmospheric boundary layer. Ph.D. dissertation, University of Maryland.Google Scholar
  4. Foss, J., Maher, M., Prevost, R., and Morris, S. (2002). Velocity-vorticity correlations in the high Re boundary layer at the SLTEST site-Utah. In Proc. 47th American Physical Society, Division of Fluid Dynamics Meeting. American Physical Society.Google Scholar
  5. Garratt, J. (1992). The atmospheric boundary layer. Cambridge University Press.Google Scholar
  6. Higgins, C, Kleissl, J., Kumar, V., Tvaroha, A., Meneveau, C, Parlange, M., and Klewicki, J. (2002). SGS-2002: Field experimental study of subfilter stress and flux statistics in the atmospheric surface layer over smooth terrain. In Proc. 47th American Physical Society, Division of Fluid Dynamics Meeting. American Physical Society.Google Scholar
  7. Hommema, S. and Adrian, R. (2000). Structure of wall eddies at very large Reynolds number-A large scale PIV study. Bull. Am. Phys. Soc., 45:132.Google Scholar
  8. Klewicki, J., Metzger, M., Keiner, E., and Thurlow, E. (1995). Viscous sublayer flow visualizations at R ¸ ≅ 1500000. Phys. Fluids, 7:857.ADSCrossRefGoogle Scholar
  9. Klewicki, J., Murray, J., and Falco, R. (1994). Vortical motion contributions to stress transport in turbulent boundary layers. Phys. Fluids, 6:277.ADSCrossRefGoogle Scholar
  10. Klewicki, J., Priyadarshana, P., Sadr, R., and Metzger, M. (2000). Axial turbulent stress transport in high and low Reynolds number boundary layers. Bull. Am. Phys. Soc, 45:36.Google Scholar
  11. Marusic, I. and Kunkel, G. (2002). Turbulence intensity similarity laws for high Reynolds number boundary layers. In Proc. IUTA M Symposium on Reynolds Number Scaling in Turbulent Flow. Princeton University.Google Scholar
  12. Marusic, I., Uddin, A., and Perry, A. (1997). Similarity law for the streamwise turbulence intensity in zero pressure-gradient turbulent boundary layers. Phys. Fluids, 9:3718.ADSCrossRefGoogle Scholar
  13. Metzger, M. and Klewicki, J. (2001). A comparative study of wall region structure in high and low Reynolds number turbulent boundary layers. Phys. Fluids, 13:692.ADSCrossRefGoogle Scholar
  14. Metzger, M., Klewicki, J., Bradshaw, K., and Sadr, R. (2001). Scaling the near-wall axial turbulent stress in the zero pressure gradient boundary layer. Phys. Fluids, 13:1819.ADSCrossRefGoogle Scholar
  15. Metzger, M., Klewicki, J., and Priyadarshana, P. (2002). Reynolds number dependencies in the behavior of boundary layer axial stress and scalar variance transport. In Proc. IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow. Princeton University.Google Scholar
  16. Priyadarshana, P. and Klewicki, J. (2002). Reynolds number scaling of wall layer velocity-vorticity products. In Proc. IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow. Princeton University.Google Scholar
  17. Sadr, R. and Klewicki, J. (2000). Surface shear stress measurement system for boundary layer flow over a salt playa. Meas. Sci. Technol., 11:1403.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • J. C. Klewicki
    • 1
  • M. M. Metzger
    • 1
  1. 1.Physical Fluid Dynamics Laboratory Department of Mechanical EngineeringUniversity of UtahUtahUSA

Personalised recommendations