Modeling Single-Phase Flows in Micro Heat Exchangers

A multiple-scales analysis approach
  • E. Mamut
Conference paper
Part of the NATO Science Series book series (NAII, volume 134)

Abstract

As a result of the resources involved in dedicated research and development programs for microsystems and microprocess engineering, but also of the scientific and engineering challenges in the field, a wide variety of products with micro-scale features have been developed, demonstrated or proposed over the last ten years, see Mamut [9]:
  • • developed and commercialized products: sensors, actuators, inkjet heads;

  • • demonstrated components and systems: optical devices (switches, micro-mirrors), biomedical devices (micromachined pipette arrays for drug delivery, acoustic devices (immersion transducers, systems for distance measurement), heat exchangers, micromixers, micropumps;

  • • systems proposed or under development: liquid dosing systems, microvalves, liquid micromotors, particle filters, injectors, microcombustors, evaporators, condensers.

Keywords

Heat Exchanger Direct Numerical Simulation Stagger Grid Emerge Technology Microchannel Heat Exchanger 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ameel, T. A., Papautsky, L, Warrington, R. O., Wegeng, R. S. and Drost, M. K. (2000). Miniaturization technologies for advanced energy conversion and transfer systems. US-DOE meeting.Google Scholar
  2. [2]
    Auriault, J. L. and Adler, P. M. (1995). Taylor dispersion in porous media: analysis by multiple scale expansions. Adv. Water Res., 18, 217–26.CrossRefGoogle Scholar
  3. [3]
    Bensoussan, A., Lions, J. L. and Papanicolau, G. (1978). Asymptotic analysis for periodic structures. North-Holland, Amsterdam.Google Scholar
  4. [4]
    Fichtner, M., Bradner, J., Linder, G., Schygulla, U., Wenka, A. and Schubert, K. (2000). Microstructure devices for application in thermal and chemical process engineering. FZK report.Google Scholar
  5. [5]
    Gad-el-Hak, M. (1999). The fluid mechanics of microdevices — the Freeman scholar lecture. J. Fluids Eng., 121, 5–33.CrossRefGoogle Scholar
  6. [6]
    Groetzbach, G. (1977). Direkte numerische Simulation turbulenter Gesschwindigkeits-, Druck-und Temperaturfelder bei Kanalstroemungen. KFK, 2426, IRS-FZK.Google Scholar
  7. [7]
    Groetzbach, G. and Schumann, U. (1979). Direct numerical simulation of turbulent velocity, pressure and temperature fields in channel flows. In Turbulent shear flow 1 (ed. F. Durst, B. E. Launder, F. W. Schmidt and J. H. Whitelaw), pp. 370-85. Springer, Berlin.Google Scholar
  8. [8]
    Mala, M. G., Dongqing, L., Werner, C., Jacobasch, J. and Ning, Y. B. (1997). Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects. Int. J. Heat Fluid Flow, 18, 489–96.CrossRefGoogle Scholar
  9. [9]
    Mamut, E. (2001). Challenges of microscale engineering. International conference on Romania & Romanians in contemporary science, Sinaia, Romania.Google Scholar
  10. [10]
    Mamut, E. (2001). Microsystems for automotive engineering. 5th international conference on the internal combustion engine, ICE 2001, Capri, Italy.Google Scholar
  11. [11]
    Mamut, E. (2001). The Navier-Stokes equations for flows through microscale channels. International summer school on ‘Heat transfer in porous media’. Neptun, Romania.Google Scholar
  12. [12]
    Mamut, E. (2002). Distributed computing for direct numerical simulation of turbulent fluid flows in advanced energy systems. International workshop on GRID computing, Bucharest, Romania.Google Scholar
  13. [13]
    Nayfeh, A. (1973). Perturbation methods. Wiley, Canada.Google Scholar
  14. [14]
    Sanchez-Palencia, E. (1980). Non-homogeneous media and vibration theory. Springer-Verlag, Berlin.Google Scholar
  15. [15]
    Schumann, U. (1973). Ein Verfahren zur direkten numerischen Simulation turbulenter Stroemungen in Platten-und Ringspaltkanaelen und über seine Anwendung zur Untersuchung von Turbulenzmodellen. KFK, 1854, FZK.Google Scholar
  16. [16]
    Schumann, U. (1975). Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli.J. Comp. Phys., 18, 376–404.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Sharp, K. V., Adrian, R. J., Santiago, J. G. and Molho, J. I. (2000). Liquid flows in microchannels. TAM report 961.Google Scholar
  18. [18]
    Whitesides, G. M. and Stroock, A. (2001). Flexible methods for fluidics. Phys. Today, pp. 42-8.Google Scholar
  19. [19]
    Wong, C. C., Lopez, A. R., Stevens, M. J. and Plimpton, S. J. (1998). Molecular dynamics simulations of microscale fluid transport. Sandia report.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • E. Mamut
    • 1
  1. 1.Center for Advanced Engineering Sciences‘Ovidius’ University of ConstantzaConstantzaRomania

Personalised recommendations