1,000-Year Environmental History of Lake Issyk-Kul

  • Santiago Giralt
  • Ramon Julià
  • Jean Klerkx
  • Santiago Riera
  • Suzanne Leroy
  • Teresa Buchaca
  • Jordi Catalan
  • Marc De Batist
  • Christian Beck
  • Vladimir Bobrov
  • Vselodov Gavshin
  • Ivan Kalugin
  • Feodorov Sukhorukov
  • Matthias Brennwald
  • Rolf Kipfer
  • Frank Peeters
  • Salvatore Lombardi
  • Vladimir Matychenkov
  • Vladimir Romanovsky
  • Victor Podsetchine
  • Nunzia Voltattorni
Part of the NATO Science Series: IV: Earth and Environmental Sciences book series (NAIV, volume 36)

Abstract

Lake Issyk-Kul constitutes one of the most important economic resources in the Republic of Kyrgyzstan, with more than 100 recreational centers along its shore. Some 370,000 holidaymakers visit the lake annually, and this number is expected to increase in the near future given the growing interest in natural environments (Romanovsky, 1990; Savvaitova and Petr, 1992). Thus, a fuller understanding of the past and present evolution of this ecosystem is essential for promoting and sustaining this natural habitat.

Keywords

Core Depth Arboreal Pollen Carbonaceous Particle Magnesian Calcite NATO Science Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizen EM, Aizen VB, Melack JM, Nakamura T, Ohta T (2001) Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. International J. Clim. 21:535–556.CrossRefGoogle Scholar
  2. Aladin NV, Plotnikov IS (1993) Large saline lakes of former USSR: a summary review: Hydrobiologia 267: 1–12.CrossRefGoogle Scholar
  3. Alpert P, Neeman BU, Shay-El Y (1990) Climatological analysis of Mediterranean cyclones using ECMWF data. Tellus 42A: 65–77.Google Scholar
  4. Andersen ST (1978) Identification of wild grass and cereal pollen. Damm. Geol. Unders. Arbog. 1978: 68–92.Google Scholar
  5. Appleby PG, Oldfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.CrossRefGoogle Scholar
  6. Atlas Kyrgyzskaja (1987) Moscow, 157 pp.Google Scholar
  7. Behre KE (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen et spores 23: 225–245.Google Scholar
  8. Cambray RS, Playford K, Lewis GNJ, Carpenter RC (1989) Radioactive fallout in air and rain: results to the end of 1987. Herwell, AERE-R, 13226.Google Scholar
  9. Chemonics International Inc. Biodiversity Assessment for Kyrgyzstan. USAID Central Asian Republic Mission, Almaty, Kazakhstan (2001) http://www.biofor.com/documents/Kyrgyzstan.pdf
  10. Clarkson JR, Price TJ, Adams CJ (1992) Role of metastable phases in the spontaneous precipitation of calcium carbonate. J. Chem. Soc. Faraday Trans. 88: 243–249.CrossRefGoogle Scholar
  11. Cullen HM, DeMenocal PB (2000) North Atlantic influence on Tigris-Euphrates streamflow. Int. J. Clim. 20: 853–863.CrossRefGoogle Scholar
  12. De Batist M, Imbo Y, Vermeesch P, Klerkx J, Giralt S, Delvaux D, Lignier V, Beck C, Kalugin I, Abdrakhmatov KE (2002) Bathymetry and sedimentary environments of Lake Isssyk-Kul, Kyrgyz republic (Central Asia): a large, high-altitude, tectonic lake. In: J. Klerkx. and B. Imanackunov (Editors), Lake Issyk-Kul: its natural environment. NATO Science Series, Kluwer Academic Publishers, Netherlands, Earth and Environmental Sciences 13: 101–123.CrossRefGoogle Scholar
  13. Davies BH (1976) Carotenoids. Academic Press, London, 36 pp.Google Scholar
  14. Deer Z (1984) Synoptic-climatic studies of dust fall in China since historic times. Scientia Sinica (Series B) 27: 825–836.Google Scholar
  15. Delvaux D (2001) DTM of Issyk-Kul. Internal Report and CD-Rom. Unpublished.Google Scholar
  16. Ding ZL, Ranov V, Yan SL, Finaev A, Han JM, Wang GA (2002) The loess record in southern Tajikistan and correlation with the Chinese loess. Earth and Planet. Sci. Let. 200: 387–400.Google Scholar
  17. Francus P (1998) An image-analysis technique to measure grain-size variation in thin sections of soft clastic sediments. Sed. Geol. 121: 289–298.CrossRefGoogle Scholar
  18. Frang JQ, Liu G (1992) Relationship between climatic change and the nomadic southward migrations in eastern Asia during historical times. Clim. Change 22: 151–169.CrossRefGoogle Scholar
  19. Fritz SC (1996) Paleolimnological records of climatic change in North America. Limnol. and Oceanogr. 41: 882–889.CrossRefGoogle Scholar
  20. Gasse F, Van Campo E (1994) Abrupt post-glacial climate events in West Asia and North Africa monsoon domains, Earth and Planet. Sci. Let. 126: 435–456.Google Scholar
  21. Giralt S, Julià R, Klerkx J (2001) Microbial biscuits of vaterite in Lake Issyk-Kul (Republic of Kyrgyzstan). J. Sed. Res. 71: 430–435.CrossRefGoogle Scholar
  22. Giralt S, Riera S, Klerkx J, Julia R, Lignier V, Beck C, De Batist M, Kalugin I (2002) Recent paleoenvironmental evolution of Lake Issyk-Kul. In: J. Klerkx. and B. Imanackunov (Editors) Lake Issyk-Kul: its natural environment. NATO Science Series, Kluwer Academic Publishers, Netherlands, Earth and Environmental Sciences 13: 125–145.CrossRefGoogle Scholar
  23. Grimm E (1987) A Fortran 77 Program for Stratigraphically Constrained Cluster Analysis by the Method of Incremental Sum of Squares. Computers & Geosciences 13: 13–35.CrossRefGoogle Scholar
  24. Hofer M, Peeters F, Aeschbach-Hertig W, Brennwald M, Holocher J, Livingstone DM (2002) Rapid deep-water renewal in Lake Issyk-Kul (Kyrgyzstan) indicated by transient tracers. Limnol. and Oceanogr. 47: 1210–1216.CrossRefGoogle Scholar
  25. Hull H, Turnbull AJ (1973) A thermodynamical study of monohydrocalcite. Geochim. Cosmochim. Acta 37: 163–170.CrossRefGoogle Scholar
  26. Issyk-Kol Biosphere (2001) http://www.issyk-kol-br.com.kg
  27. Jeffrey SW, Mantoura RFC, Wright SW (1997) Phytoplankton pigments in oceanography: guidelines to modern methods, UNESCO Publishing, Paris, 661 pp.Google Scholar
  28. Karmanchuk AS (2002) Water chemistry and ecology of Lake Issyk-Kul. In: J. Klerkx. and B. Imanackunov (Editors) Lake Issyk-Kul: its natural environment. NATO Science Series, Kluwer Academic Publishers, Netherlands, Earth and Environmental Sciences 13: 13–26.CrossRefGoogle Scholar
  29. Kreutz K, Aizen V, Cecil D, Wake C (2001) Dust deposition and isotopic composition of precipitation recorded in a shallow ice core, Inilchek glacier, central Tien Shan. J. Glaciol. 47: 549–554.CrossRefGoogle Scholar
  30. Léveillé RJ, Fyfe WS, Longstaffe FJ (2000) Geomicrobiology of carbonate - silicate microbialites from Hawaiian basaltic sea caves. Chem. Geol. 169: 339–355.CrossRefGoogle Scholar
  31. Ma CJ, Kasahara M, Höller R, Kamiya T (2001) Characteristics of single particles sampled in Japan during the Asian dust-storm period. Atm. Environ. 35: 2707–2714.CrossRefGoogle Scholar
  32. Arendal (2000) The State of the Environment of Kyrgyz Republic. http://www.grida.no/enrin/htmls/kyrghiz/soe2/index.htm Google Scholar
  33. Peeters F, Finger D, Hofer M, Brennwald M, Livingstone DM, Kipfer R (2003) Deep-water renewal in Lake Issyk-Kul driven by differential cooling. Limnol. and Oceanogr. 48: 1419–1431.CrossRefGoogle Scholar
  34. Rasmussen KA, Romanovsky VV, Maclntyre IG (1996) Late Quaternary coastal microbialites and beachrocks of Lake Issyk-Kul, Kyrgyzstan: geologic, hydrographie, and climatic significance (abstract). Geological Society of America, Annual Meeting, Abstracts with Programs, 28: A–304.Google Scholar
  35. Rhodes TE, Gasse F, Ruifern L, Fontes JC, Keqin W, Bertrand P, Gibert E, Mélières F, Tucholka P, Zhixiang W, Zhi-Yuan C (1996) Late Pleistocene Holocene lacustrine record from Lake Manas, Zunggar (northern Xinjiang, Western China). Palaeogeogr., Palaeoclim., Palaeoecol. 120: 105–121.CrossRefGoogle Scholar
  36. Ricketts R, Johnson TC, Brown ET, Rasmussen KA, Romanovsky VV (2001) The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr., Palaeoclim., Palaeoecol. 176: 207–227.CrossRefGoogle Scholar
  37. Rigozo NR, Echer E, Vieira LEA, Nordemann DJR (2001) Reconstruction of Wolf sunspot numbers on the basis of spectral characteristics and estimates of associated radio flux and solar wind parameters for the last millennium. Solar Physics 203: 179–191.CrossRefGoogle Scholar
  38. Romanovsky VV (1990) Lake Issyk-Kul - a natural system. Ilim., Frunze (in Russian).Google Scholar
  39. Romanovsky VV (2002) Water level variations and water balance of Lake Issyk-Kul. In: J. Klerkx. and B. Imanackunov (Editors). Lake Issyk-Kul: its natural environment. NATO Science Series, Kluwer Academic Publishers, Netherlands, Earth and Environmental Sciences 13: 45–58.CrossRefGoogle Scholar
  40. Rose NL (1994) A note on further refinements to a procedure for the extraction of carbonaceous fly-ash particles from sediments. J. Paleolim. 11: 201–204.CrossRefGoogle Scholar
  41. Rowan KS (1989) Photosynthetic Pigments of Algae. Cambridge Univ. Press, Cambridge, 334 pp.Google Scholar
  42. Sanger JE (1988) Fossil pigments in paleoecology and paleolimnology. Palaeogeogr., Palaeoclim., Palaeoecol. 62: 343–359.CrossRefGoogle Scholar
  43. Sapozhnikov DG, Viselkina MA (1960) Recent sediments of the Lake Issyk-Kul and its bays, Moscow, Publishing House Akademii Nauk (in Russian).Google Scholar
  44. Savvaitova K, Petr T (1992) Lake Issyk-Kul, Kirgizia. Int. J. Salt Lake Res. 1: 21–46.CrossRefGoogle Scholar
  45. Sevastyanov DV (1991) Historical-archaeological data on the changes of shores and lake level fluctuations. In The history of Sevan, Issyk-Kul, Balkhash, Zaisan and Aral lakes. Leningrad, Nauka.Google Scholar
  46. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen et Spores 13: 615–621.Google Scholar
  47. Stoffers P, Fischbeck R (1974) Monohydrocalcite in the sediments of Lake Kivu (East Africa). Sedimentology 21: 163–170.CrossRefGoogle Scholar
  48. Sun J (2002) Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planet. Sci. Let. 203: 845–859.Google Scholar
  49. Swain EB (1985) Measurement and interpretation of sedimentary pigments. Freshwater Biology 15: 53–75.CrossRefGoogle Scholar
  50. Ugur A, Miquel JC, Fowler SW, Appleby P (2003) Radiometric dating of sediment cores from a hydrothermal vent zone off Milos Island in the Aegean Sea. The Sci. of the Total Environ. 307: 203 214.CrossRefGoogle Scholar
  51. Walter H, Box EO (1983) The orobiomes of Middle Asia. In: N.E. West (Editor) Ecosystems of the world: temperate deserts and semi-deserts. Elsevier scientific publishing company, Amsterdam, 161–191.Google Scholar
  52. Wright SW, Jeffrey SW, Mantoura RFC, Llewellyn CA, Bjornland T, Repeta D, Welschmeyer N (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Prog. Ser. 77: 183–196.CrossRefGoogle Scholar
  53. Yafeng S, Zhaozheng K, Sumin W, Lingyu T, Fubao W, Tandong Y, Xitao Z, Peiyuan Z, Shaohua S (1993) Mid-Holocene climates and environments in China, Global and Planet. Change 7: 219–233.Google Scholar
  54. Yang HR, Battarbee R (2001) Dating of recent catchment peats using spheroidal carbonaceous particle (SCP) concentration profile with particular reference to Lochnagar, Scotland. The Holocene 11: 593–597.CrossRefGoogle Scholar
  55. Zabirov RD, Korotaev VN (1978) Location and morphometry of the lake. Lake Issyk-Kul. Frunze, 12–20 (In Russian).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Santiago Giralt
    • 1
  • Ramon Julià
    • 1
  • Jean Klerkx
    • 2
  • Santiago Riera
    • 3
  • Suzanne Leroy
    • 4
  • Teresa Buchaca
    • 5
  • Jordi Catalan
    • 5
  • Marc De Batist
    • 6
  • Christian Beck
    • 7
  • Vladimir Bobrov
    • 7
  • Vselodov Gavshin
    • 8
  • Ivan Kalugin
    • 8
  • Feodorov Sukhorukov
    • 8
  • Matthias Brennwald
    • 9
  • Rolf Kipfer
    • 9
  • Frank Peeters
    • 9
  • Salvatore Lombardi
    • 10
  • Vladimir Matychenkov
    • 11
  • Vladimir Romanovsky
    • 11
  • Victor Podsetchine
    • 12
  • Nunzia Voltattorni
    • 13
  1. 1.Institute of Earth Sciences “Jaume Aimera” (CSIC)BarcelonaSpain
  2. 2.International Bureau for Environmental Studies (IBES)BruxellesBelgium
  3. 3.Department of Archaeology, Faculty of HistoryUniversity of BarcelonaBarcelonaSpain
  4. 4.Department of Geography and Earth SciencesBrunel University (West London)UxbridgeUK
  5. 5.Centre d’Estudis Avançats de Blanes (CEAB- CSIC)BlanesSpain
  6. 6.Renard Centre of Marine GeologyGeological Institute, University of GentGentBelgium
  7. 7.Laboratoire de Géodynamique des Chaines Alpines, U.M.R. C.N.R.S. 5025Université de Savoie, Campus Savoie-TechnolacLe Bourget-du-Lac CedexFrance
  8. 8.United Institute of Geology, Geophysics and MineralogyNovosibirskRussia
  9. 9.Swiss Federal Institute of Technology (ETH) and Swiss FederalInstitute of Environmental Science and Technology (EAWAG)DübendorfSwitzerland
  10. 10.Department of Earth SciencesUniversity of Rome ‘La Sapienza’RomeItaly
  11. 11.Institute of Water Problems and HydropowerNational Academy of Sciences of the Kyrgyz RepublicBishkekRepublic of Kyrgyzstan
  12. 12.Pirkanmaa Regional Environment CentreTampereFinland
  13. 13.Istituto Nazionale di Geofisica e Vulcanologia Sezione Roma 1RomaItaly

Personalised recommendations