Unlocking Mechanisms in Gene Therapy, Stress and Proteomics

  • Andrew D. Miller
Conference paper
Part of the NATO Science Series book series (NAII, volume 129)


Gene therapy may be described as the use of genes as medicines to treat disease, or more precisely as the delivery of nucleic acids by means of a vector to patients for some therapeutic purpose. Gene therapy is a therapeutic modality with enormous promise, but one that has regrettably failed to deliver much of therapeutic significance to date in spite of substantial clinical trial interest throughout the world [1]. General inadequacy of the vector systems used to deliver therapeutic nucleic acids to desired sites of action is the primary reason for lack of clinical success. Researchers have been seduced by the apparent simplicity of gene therapy approaches to treatment driving for clinical applications before vector technologies have been adequately developed or understood. Predictably, there has been a dramatic loss of confidence in gene therapy research in recent times matched by a decline in scientific and public perceptions of gene therapy. In my view this is unhelpful, gene therapy retains all future promise but there now needs to be a period of patient, logical technical and scientific development of new vector systems prior to any major second round of clinical trial activity [1].


Gene Therapy Cystic Fibrosis Transmembrane Conductance Regulator Cationic Liposome Nuclear Localisation Sequence Cystic Fibrosis Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, A. D. (2002) The problem with gene therapy, Global Outsourcing Review 4, 8–10.Google Scholar
  2. 2.
    Miller, A. D. (1998) Cationic liposomes for gene therapy, Angew. Chem. Int. Ed. 37, 1768–1785.CrossRefGoogle Scholar
  3. 3.
    Miller, A. D. (1998) Cationic liposome systems in gene therapy, Curr. Res. Mol. Ther. 1, 494–503.Google Scholar
  4. 4.
    Miller, A. D. (1999) Nonviral delivery systems for gene therapy, in N. R. Lemoine (ed.), Under standing Gene Therapy, Bios Scientific Publishers, Oxford, pp. 43-69.Google Scholar
  5. 5.
    Miller, A. D. (2003) Synthetic gene delivery systems, in D. N. Cooper (ed.),. Encyclopedia of the Human Genome, Nature Publishing Group, London, in press.Google Scholar
  6. 6.
    Miller, A. D. (2003) The problem with cationic liposome/micelle-based non-viral vector systems for gene therapy. Curr. Topics Med. Chem., in pressGoogle Scholar
  7. 7.
    Tagawa, T., Manvell, M., Brown, N., Keller, M., Perouzel, E., Murray, K. D., Harbottle, R. P., Tecle, M., Booy, F., Brahimi-Horn, M. C, Coutelle, C, Lemoine, N. R., Alton, E. W. F. W., and Miller, A. D. (2002) Characterisation of LMD virus-like nanoparticles self-assembled from cationic liposomes, adenovirus core peptide m (mu) and plasmid DNA, Gene Ther. 9, 564–576.CrossRefGoogle Scholar
  8. 8.
    Griesenbach, U., Ferrari, S., Geddes, D. M., and Alton, E. W. (2002) Gene Therapy Progress and Prospects: Cystic fibrosis, Gene Ther. 9, 1344–1350.CrossRefGoogle Scholar
  9. 9.
    Alton, E. W. F. W., Middleton, P. G., Caplen, N. J., Smith, S. N., Steel, D. M., Munkonge, F. M., Jeffery, P. K., Geddes, D. M., Hart, S. L., Williamson, R., Fasold, K. I., Miller, A. D., Dickinson, P., Stevenson, B. J., McLachlan, G., Dorin, J. R., and Porteous, D. J. (1993) Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice, Nat. Genet. 5, 135–142.CrossRefGoogle Scholar
  10. 10.
    Cooper, R. G., Etheridge, C. J., Stewart, L., Marshall, J., Rudginsky, S., Cheng, S. H., and Miller, A. D. (1998) Polyamine analogues of 3b-[N-(N’,N’-dimethylaminoethane)carbamoyl]cholesterol (DC-Choi) as agents for gene delivery, Chem. Eur. J. 4, 137–152.CrossRefGoogle Scholar
  11. 11.
    Stewart, L., Manvell, M., Hillery, E., Etheridge, C. J., Cooper, R. G., Stark, H., van-Heel, M., Preuss, M., Alton, E. W. F. W., and D., M. A. (2001) Physico-chemical analysis of cationic liposome-DNA complexes (lipoplexes) with respect to in vitro and in vivo gene delivery efficiency, J. Chem. Soc, Perkin Trans. 2, 624–632.Google Scholar
  12. 12.
    Lee, E. R., Marshall, J., Siegel, C. S., Jiang, C, Yew, N. S., Nichols, M. R., Nietupski, J. B., Ziegler, R. J., Lane, M. B., Wang, K. X., Wan, N. C, Scheule, R. K., Harris, D. J., Smith, A. E., and Cheng, S. H. (1996) Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung, Hum. Gene Ther. 7, 1701–1717.CrossRefGoogle Scholar
  13. 13.
    Alton, E. W. F. W., Stern, M., Farley, R., Jaffe, A., Chadwick, S. L., Phillips, J., Davies, J., Smith, S. N., Browning, J., Davies, M. G., Hodson, M. E., Durham, S. R., Li, D., Jeffery, P. K., Scallan, M., Balfour, R., Eastman, S. J., Cheng, S. H., Smith, A. E., Meeker, D., and Geddes, D. M. (1999) Cationic lipidmediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial, Lancet 353, 947–954.CrossRefGoogle Scholar
  14. 14.
    Anderson, C. W., Young, M. E., and Flint, S. J. (1989) Characterization of the adenovirus 2 virion protein, mu, Virology 172, 506–512.CrossRefGoogle Scholar
  15. 15.
    Hosokawa, K., and Sung, M. T. (1976) Isolation and characterization of an extremely basic protein from adenovirus type 5, J. Virol. 17, 924–934.Google Scholar
  16. 16.
    Chatterjee, P. K., Vayda, M. E., and Flint, S. J. (1985) Interactions among the three adenovirus core proteins, J. Virol. 55, 379–386.Google Scholar
  17. 17.
    Matthews, D. A., and Russell, W. C. (1998) Adenovirus core protein V interacts with p32—a protein which is associated with both the mitochondria and the nucleus, J. Gen. Virol. 79, 1677–1685.Google Scholar
  18. 18.
    Murray, K. D., Etheridge, C. J., Shah, S. I., Matthews, D. A., Russell, W., Gurling, H. M. D., and Miller, A. D. (2001) Enhanced cationic liposome-mediated transfection using the DNA-binding peptide m (mu) from the adenovirus core, Gene Ther. 8, 453–460.CrossRefGoogle Scholar
  19. 19.
    Keller, M., Harbottle, R. P., Perouzel, E., Colin, M., Shah, I., Rahim, A., Vaysse, L., Bergau, A., Moritz, S., Brahimi-Horn, C, Coutelle, C, and Miller, A. D. (2003) Nuclear localization sequence (NLS)templated non-viral gene delivery vectors: investigation of intracellular trafficking events of LMD and LD vector systems,. Chem Bio Chem, in pressGoogle Scholar
  20. 20.
    Cooper, R. G., Harbottle, R. P., Schneider, H., Coutelle, C, and Miller, A. D. (1999) Peptide mini-vectors for gene delivery, Angew. Chem. Int. Ed. 38, 1949–1952.CrossRefGoogle Scholar
  21. 21.
    Duffels, A., Green, L. G., Ley, S. V., and Miller, A. D. (2000) Synthesis of high-mannose type neoglycolipids: active targeting of liposomes to macrophages in gene therapy, Chem. Eur. J. 6, 1416–1430.CrossRefGoogle Scholar
  22. 22.
    Hood, J. D., Bednarski, M., Frausto, R., Guccione, S., Reisfeld, R. A., Xiang, R., and Cheresh, D. A. (2002) Tumor regression by targeted gene delivery to the neovasculature, Science 296, 2404–2407.CrossRefGoogle Scholar
  23. 23.
    Zanta, M. A., Belguise-Valladier, P., and Behr, J. P. (1999) Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus, Proc Natl. Acad. Sci. USA 96, 91–96.CrossRefGoogle Scholar
  24. 24.
    Haiti, F. U., and Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein, Science 295, 1852–1858.CrossRefGoogle Scholar
  25. 25.
    Hutchinson, J. P., El-Thaher, T. S. H., and Miller, A D. (1994) Refolding and recognition of mitochondrial malate dehydrogenase by Escherichia coli chaperonins cpn 60 (groEL) and cpnlO (groES), Biochem. J. 302, 405–410.Google Scholar
  26. 26.
    Miller, A. D., Maghlaoui, K., Albanese, G., Kleinjan, D. A., and Smith, C. (1993) Escherichia coli chaperonins cpn60 (groEL) and cpnlO (groES) do not catalyse the refolding of mitochondrial malate dehydrogenase, Biochem. J. 291, 139–144.Google Scholar
  27. 27.
    Smith, C. M, Köhler, R. J., Barho, E., El-Thaher, T. S. H., Preuss, M., and Miller, A. D. (1999) Characterisation of Cpn60 (GroEL) bound cytochrome c: the passive role of molecular chaperones in assisting folding/refolding of proteins, J. Chem. Soc, Perkin Trans. 2, 1537–1546.Google Scholar
  28. 28.
    Köhler, R. J., Preuss, M., and Miller, A. D. (2000) Design of a molecular chaperone-assisted protein folding bioreactor, Biotechnol. Progress 16, 671–675CrossRefGoogle Scholar
  29. 29.
    Köhler, R. J., Preuss, M., Jones, H., and Miller, A. D. (2002) Protein affinity purification and analysis technologies, in M. P. Weiner and Q. Lu (eds.),. Gene cloning and expression technologies, Eaton Publishing, Westborough, MA, pp. 439-445.Google Scholar
  30. 30.
    Preuss, M., and Miller, A. D. (1999) Interaction with GroEL destabilises non-amphiphilic secondary structure in a peptide, FEBS Lett. 461, 131–135.CrossRefGoogle Scholar
  31. 31.
    Hutchinson, J. P., Oldham, T. C, El-Thaher, T. S. H., and Miller, A. D. (1997) Electrostatic as well as hydrophobic interactions are important for the association of Cpn60 (groEL) with peptides, J. Chem. Soc, Perkin Trans. 2, 279–288.Google Scholar
  32. 32.
    Preuss, M., Hutchinson, J. P., and Miller, A. D. (1999) Secondary structure forming propensity coupled with amphiphilicity is an optimal motif in a peptide or protein for association with chaperonin 60 (GroEL), Biochemistry 38, 10272–10286.CrossRefGoogle Scholar
  33. 33.
    Nagata, K. (1996) Hsp47: a collagen-specific molecular chaperone, Trends Biochem. Sci. 21, 22–26.Google Scholar
  34. 34.
    Dafforn, T. R., Delia, M., and Miller, A. D. (2001) The molecular interactions of heat shock protein 47 (Hsp47) and their implications for collagen biosynthesis, J. Biol. Chem. 276, 49310–49319.CrossRefGoogle Scholar
  35. 35.
    El-Thaher, T. S. H., Drake, A. F., Yokota, S., Nakai, A., Nagata, K., and Miller, A. D. (1996) The pHdependent, ATP-independent interaction of collagen specific serpin/stress protein HSP47, Prot. Pept. Lett. 3, 1–8CrossRefGoogle Scholar
  36. 36.
    McLennan, A. G., Barnes, L. D., Blackburn, G. M., Brenner, C, Guranowski, A., Miller, A. D., Rovira, J. M., Rotllan, P., Soria, B., Tanner, J. A., and Sillero, A. (2001) Recent progress in the study of the intracellular functions of diadenosine polyphosphates, Drug Development Res. 52, 249–259.CrossRefGoogle Scholar
  37. 37.
    McLennan, A. G. (2000) Dinucleoside polyphosphates-friend or foe? Pharmacol. Therapeutics 87, 73–89.CrossRefGoogle Scholar
  38. 38.
    Theoclitou, M.-E., Wittung, E. P. L., Hindley, A. D., El-Thaher, T. S. H., and Miller, A. D. (1996) Characterisation of stress protein LysU. Enzymic synthesis of diadenosine 5’, 5“’-Pl, P4-tetraphosphate (Ap4A) analogues by LysU,. J. Chem. Soc, Perkin Trans. /, 2009-2019.Google Scholar
  39. 39.
    Onesti, S., Theoclitou, M. E., Wittung, E. P. L., Miller, A. D., Plateau, P., Blanquet, S., and Brick, P. (1994) Crystallization and preliminary diffraction studies of Escherichia coli lysyl-tRNA synthetase (LysU), J. Mol. Biol. 243, 123–125.CrossRefGoogle Scholar
  40. 40.
    Onesti, S., Miller, A. D., and Brick, P. (1995) The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli, Structure 3, 163–176.CrossRefGoogle Scholar
  41. 41.
    Tanner, J. A., Abowath, A., and Miller, A. D. (2002) Isothermal titration calorimetry reveals a zinc ion as an atomic switch in the diadenosine polyphosphates, J. Biol. Chem. 277, 3073–3078.CrossRefGoogle Scholar
  42. 42.
    Wright, M., Tanner, J. A., and Miller, A. D. (2003) Quantitative single-step purification of dinucleoside polyphosphates,. Anal Biochem., in press.Google Scholar
  43. 43.
    Melnik, S., Wright, M., Tanner, J. A., Tsintsadze, T., Krishtal, O., Miller, A. D., and Lozovaya, N. (2003) Diadenosine polyphosphate exerts highly selective control of hippocampal excitation, manuscript in preparationGoogle Scholar
  44. 44.
    Melnik, S., Wright, M., Tanner, J. A., Tsintsadze, T., Krishtal, O., Miller, A. D., and Lozovaya, N. (2003) Diadenosine polyphosphate exerts subtype-specific modulation of NMDA-receptor induced currents in hippocampal neurons, manuscript in preparationGoogle Scholar
  45. 45.
    Hughes, S. J., Tanner, J. A., Hindley, A. D., Miller, A. D., and Gould, I. G. (2003) Functional asymmetry in the lysyl-tRNA synthetase explored by molecular dynamics, free energy calculations and experiment,. J. Mol. Biol., in submissionGoogle Scholar
  46. 46.
    Heal, J. R., Roberts, G. W., Raynes, J. G., Bhakoo, A., and Miller, A. D. (2002) Specific interactions between sense and complementary peptides; the basis for the proteomic code, ChemBioChem 3, 136–151; 271.Google Scholar
  47. 47.
    Heal, J. R., Bino, S., Roberts, G. W., Raynes, J. G., and Miller, A. D. (2002) Mechanistic investigation into complementary (antisense) peptide mini-receptor inhibitors of cytokine interleukin-1, ChemBioChem 3, 76–85.CrossRefGoogle Scholar
  48. 48.
    Davids, J. W., El-Bakri, A., Heal, J., Christie, G., Roberts, G. W., Raynes, J. G., and Miller, A. D. (1997) Design of antisense (complementary) peptides as selective inhibitors of cytokine interleukin-1, Angew. Chem. Int. Ed. 36, 962–967.CrossRefGoogle Scholar
  49. 49.
    Bhakoo, A., Raynes, J. G., Heal, J. R., and Miller, A. D. (2003) De-novo design of complementary peptide inhibitor of interleukin 18 (IL-18),. ChemBioChem, in submissionGoogle Scholar
  50. 50.
    Heal, J. R., Roberts, G. W., Christie, G., and Miller, A. D. (2002) Inhibition of beta-amyloid aggregation and neurotoxicity by complementary (antisense) peptides, Chembiochem 3, 86–92.CrossRefGoogle Scholar
  51. 51.
    Miller, A. D. (1998) Forming a strategic alliance in Japan,. European BioPharmaceutical Review December, 38-42.Google Scholar
  52. 52.
    Miller, A. D. (2000) Forming a strategic alliance with Japanese industry,. Global Outsourcing Review 2, 98-102.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Andrew D. Miller
    • 1
  1. 1.Department of ChemistryImperial College London Imperial College Genetic Therapies CentreSouth Kensington, LondonUK

Personalised recommendations