The Fundamental Role of Melanocortins in Brain Processes

  • V. Klusa
  • B. Jansone
  • S. Svirskis
  • J. Rumaks
  • R. Muceniece
Conference paper
Part of the NATO Science Series book series (NAII, volume 129)

Abstract

The discoveries of the latest ten years have shed new light in understanding the roles of melanocortins and their receptors in brain functions and in the development of different pathologies. Since 1992 when genes encoded melanocortin receptor five subtypes were identified, cloned and characterized, the molecular mechanisms underlying different effects such as skin darkening, behaviour, food intake, anti-inflammatory action, analgesia have been clarified. The contribution of melanocortins and their receptors in the physiological control of organism homeostasis has become as the background for the search of agonists and antagonists of separate receptor subtypes, that can be targeted to the melanocortin receptors and used as therapeutic drugs for the treatment of psychoneuroendocrine and immune system diseases.

Keywords

Receptor Subtype Ventral Tegmental Area Melanocortin Receptor ACTH Receptor Human Dermal Microvascular Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eberle, A.N. (1998) The Melanotropins: Chemistry, Physiology and Mechanisms of Action, Karger, Basel, 556pp.Google Scholar
  2. 2.
    Nakanish, S.N., Inoue, A., Kita, T., Nakamura, M., Chang, A.C.Y., Cohen, S.N. and Numa, S. (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-β-lipotropin precursor, Nature 278, 423–427.CrossRefGoogle Scholar
  3. 3.
    Wikberg, J.E.S. (1999) Melanocortin receptors: perspectives for novel drugs,. Eur. J. Pharmacol. 375, 295-310.Google Scholar
  4. 4.
    Fuchs, R..F. (1912) Die Physiologische Function des Chromatophorsystems als Organ der Physikalishen Warmeregulierung der Poikilotherme, Sitzungsberichte der Physikalisch-Medizinischen Sozietat in Erlangen 44, 134–177.Google Scholar
  5. 5.
    Lerner, AB.and Lee, T.H. (1995) Isolation of a homogenous melanocyte-stimulating hormone from hog pituitary gland, J. Am. Chem. Soc. 77, 1066–1067.CrossRefGoogle Scholar
  6. 6.
    Xia, Y., Skoog, V., Muceniece, R., Chhajlani, V and Wikberg, J.E.S. (1995) Polyclonal antibodies against human melanocortin MC-1 receptor: preliminary immunohistochemical localisation of melanocortin MC-1 receptor to malignant melanoma cells, Eur. J. Pharmacol. 288, 277–283.CrossRefGoogle Scholar
  7. 7.
    Beyer, C, Kaufmann, K.and Wehner, F. (1990) Importance and function of the melanocyte-stimulating hormone in malignant melanoma. Importance of MSH, Dermatol. Monatsschr. 176, 589–596Google Scholar
  8. 8.
    Siegrist, W. and Eberle, A.N. (1993) Homologous regulation of the MSH receptor in melanoma cells, J. Recept.Res. 13, 263–81.Google Scholar
  9. 9.
    De Wied, D. and Jolies, J. (1982) Neuropeptides derived from pro-opiocortin: behavioral, physiological, and neurochemical effects, Physiol.Rev. 62, 976–1059.Google Scholar
  10. 10.
    Chhajlani, V. and Wikberg, J.E.S. (1992) Molecular cloning and expression of the hyman melanocyte stimulating hormone receptor cDNA, FEBS Lett. 309, 417–420.CrossRefGoogle Scholar
  11. 11.
    Montjoy, K.G., Robbins, L.S., Mortrud, M.T. and Cone, R.D. (1992) The cloning of a family of genes that encode the melanocortin receptors, Science 257, 1248–1251.CrossRefGoogle Scholar
  12. 12.
    Xia, Y., Wikberg, J.E.S. and Chhajlani, V. (1995) Expression of melanocortin 1 receptor in periaqueductal gray matter, Mol. Neurosci. 6, 2193–2196.Google Scholar
  13. 13.
    Chhajlani, V. (1996) Distribution of cDNA for melanocortin receptor subtypes in human tissues,. Biochem. Biol. Int. 38: 73-80.Google Scholar
  14. 14.
    Boston, B.A. and Cone, R.D. (1996) Characterization of melanocortin receptor subtype expression in murine adipose tissues and in the 3T3-LI cell line. Endocrinology 137, 2043–2050.CrossRefGoogle Scholar
  15. 15.
    Luger, T.A., Scholzen, T. and Grabbe, S. (1997) The role of alpha-melanocyte-stimulating hormone in cutaneous biology, J.Invest. Dermatol. Symp. Proc. 2, 87–93.CrossRefGoogle Scholar
  16. 16.
    Star, R.A., Rajora, N., Huang, J., Stock, R.C., Catania, A. and Lipton, J.M. (1995) Evidence of autocrine modulation of macrophage nitric oxide synthase by a-melanocyte-stimulating hormone, Proc. Natl. Acad. Sci.USA 92, 8016–8020.CrossRefGoogle Scholar
  17. 17.
    Hartmeyer, M., Scholzen, T., Becher, E., Bhardwaj, R.S., Schwarz, T. and Luger, T.A (1997) Human dermal microvascular endothelial cells express the melanocortin receptor type 1 and produce levels of IL-8 upon stimulation with alpha-melanocyte stimulating hormone, J.Immunol. 159, 1930–1937.Google Scholar
  18. 18.
    Catania, A., Cutuli, M., Garofalo, L., Airaghi, L., Valenza, F., Lipton, J.M. and Gatinoni, L. (2000) Plasma concentrations and anti-L-cytokine effects of a-melanocyte stimulating hormone in septic patients, Cht. Care Med 28, 1403–1407.CrossRefGoogle Scholar
  19. 19.
    Wong, K.Y., Rajora, N., Boccoli, G., Catania, A. and Lipton, J.M. (1997) A. potential mechanism of local anti-inflammatory action of alpha-melanocyte-stimulating hormone within the brain: modulation of tumor necrosis factor-alpha production by human astrocytic cells, Neuroimmunomodulation 4, 37–41.Google Scholar
  20. 20.
    Xia, Y. and Wikberg, J.E.S. (1996) In situ hybridization biochemical localization of ACTH receptor mRNA in mouse adrenal gland,. Cell Tissue Res. 286: 63-68.Google Scholar
  21. 21.
    Schioth, H.B., Chhajlani, V., Muceniece, R., Klusa, V. and Wikberg, J.E.S. (1996) Major pharmacological distinction of the ACTH receptor from the other melanocortin receptors, Life Sci. 59, 797–801.CrossRefGoogle Scholar
  22. 22.
    Slominski, A., Ernak, G. and Mihm, M. (1996) ACTH receptor. CYP11 Al, CYP17 and CYP21A2 genes are expressed in skin, J.Clin.Endocrinol. Metab. 81, 2746–2749.CrossRefGoogle Scholar
  23. 23.
    Gantz, I., Konda, Y., Tashiro, T., Shimoto, Y., Miwa, H., Munzert, G., Watson, S.J., DelValle, J and Yamada, T. (1993) Molecular cloning of a novel malanocortin receptor, J.Biol. Chem. 268, 8246–8250.Google Scholar
  24. 24.
    Lindblom, J., Schioth, HB., Larsson, A, Wikberg, J.E.S. and Bergstrom, L. (1998) Autoradiographic discrimination of melanocortin receptors indicates that the MC3 subtype dominates in the medial brain, Brain Res. 810, 161–171.CrossRefGoogle Scholar
  25. 25.
    Roselli-Rehfuss, L., Mountjoy, K.G., Robbins, L.S., Mortrud, M.T., Low, M.J., Tatro, J.B., Entwistle, M.L., Simerly, R.B. and Cone, R.D. (1993). Identification of receptor for y-melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system,. Proc. Natl. Acad. Sci. USA 90, 8856-8860.Google Scholar
  26. 26.
    Mountjoy, K.G., Mortrud, M.T., Low, M.J., Simerly, R.B. and Cone, R.D. (1994) Localisation of melanocortin-4 receptor (MC4-R) in endocrine and autonomic control circuits in the brain, Mol. Endocrinol. 8, 1298–1308.CrossRefGoogle Scholar
  27. 27.
    Lindblom, J., Opmane, B., Mutulis, F., Mutule, I., Petrovska, R., Klusa, V., Bergstrom, L. and Wikberg, J.E.S. (2001) The MC4 receptor mediates a-MSH induced release of nucleus accumbens dopamine, Neuroreport 12, 2155–2174.CrossRefGoogle Scholar
  28. 28.
    Takeuchi,S. and Takahashi, S. (1998) Melanocortin receptor genes in the chicken-tissue distributions, Gen. Comp. Endocrinol.112, 220–31.CrossRefGoogle Scholar
  29. 29.
    Schioth, H.B. (2000) The melanocortin receptors: From cloning to treatment of anorexia, Recent Res. Devel.Chemical Engg. 4, 461–485.Google Scholar
  30. 30.
    Wikberg, J.E.S. (2001) Melanocortin receptors: new opportunities in drug discovery, Exp. Opin. Ther. Patents 11, 61–76.CrossRefGoogle Scholar
  31. 31.
    Prusis, P., Schioth, H.B., Muceniece, R., Herzyk, P., Afshar, M., Hubbard, R.E. and Wikberg, J.E.S. (1997) Modeling of the three-dimensional structure of the human melanocortin-1 receptor using an automated method and docking of a rigid cyclic MSH core peptide,. J. Molecular Graphics Modelling, 15, 307-317.Google Scholar
  32. 32.
    Schioth, H.B. (2001) The physiological role of melanocortin receptors, Vitamins and Hormones 63, 195–232.CrossRefGoogle Scholar
  33. 33.
    Konda, Y., Gantz, I., DelValle, H.J., Shimoto, Y., Miwa, M. and Yamada, T. (1994) Interaction of dual intra-cellular signalling pathways activated by the melanocortin-3 receptor, J. Biol. Chem. 269, 13162–13166.Google Scholar
  34. 34.
    Schioth, H.B., Muceniece, R., Wikberg, J.E.S. and Chhajlani, V. (1995) Characterization of melanocortin receptor subtypes by radioligand binding analysis, Eur. J. Pharmacol. 288, 311–317.CrossRefGoogle Scholar
  35. 35.
    Schioth, H.B., Muceniece, R. and Wikberg, J.E.S. (1996) Characterisation of melanocortin 4 receptor by radioligand binding analysis, Pharmacol. Toxicol. 79, 161–165.CrossRefGoogle Scholar
  36. 36.
    Kalden, D.H., Scholzen, T., Brzoska, T. and Luger, R.A. (1999) Mechanisms of the anti-inflammatory effects of alpha-MSH. Role of transcription factor NF-KB and adhesian molecule expression, Ann. NY Acad Sci. 885, 254–261.CrossRefGoogle Scholar
  37. 37.
    Blalock, J.E., Harbour-McMenamin, D.and Smith, E.M. (1985) Peptide hormone shared by the neuroendocrine and immunological systems,. J Immunol. 135 (suppl.), 858-61.Google Scholar
  38. 38.
    Mandrika, I., Muceniece, R. and Wikberg, J.E.S. (2001) Effects of melanocortin peptides on lipopolisaccharide/interferonγy induced NF-kappaB DNA-binding and nitric oxide production in macrophage-like RAW 264.7 cells: evidence for dual mechanism of action,. Biochem. Pharmacol. 61, 613-621.Google Scholar
  39. 39.
    Chagnon, V.C., Chen, W.J., Perusse, L., Hagnon, M., Nadeau, A., Wilkinson, W. and Boschard, C. (1997) Linkage and association studies between the melanocortin receptor 4 and 5 genes and obesity-related phenotypes in the Quebec family study,. Mol. Med. 3:663-673.Google Scholar
  40. 40.
    Wikberg, J.E.S., Muceniece, R., Mandrika, I., Prusis, P., Post, C. and Skottner, A. (2000) New aspects on the melanocortins and their receptors, Pharmacol Res. 42, 393–420.CrossRefGoogle Scholar
  41. 41.
    Poggioli, R., Vergoni, A.V. and Bertolini, A. (1986) ACTH (1-24) and alpha-MSH antagonize feeding behavior stimulated by kappa opiate agonists, Peptides 7, 843–848.CrossRefGoogle Scholar
  42. 42.
    Millenium Pharmaceuticals, US 5932779 (1999).Google Scholar
  43. 43.
    Lu, D., Willard, D., Patel, J.R., Kadwell, S., Overton, L., Kost, T., Luther, M., Chen, W., Woychik, R.P., Wilkinson, W.O. and Cone, R.D. (1994) Agouti protein is an antagonist of the melanocyte-stimulating hormone receptors, Nature 371, 799–802.CrossRefGoogle Scholar
  44. 44.
    Kask, A., Pahkla, R., Irs, A, Rago, L., Wikberg, J.E.S. and Schioth, H.B. (1999) Long-term administration of MC4 receptor antagonist HS014 causes hyperphagia and obesity in rats, NeuroReport 10, 707–711.CrossRefGoogle Scholar
  45. 45.
    Alvaro, J.D, Tatro, J.B, Quillan, J.M., Fogliano, M., Eisenhard, M., Lerner, M.R., Nestler, E.J. and Duman, R.S. (1996) Morphine down-regulates melanocortin-4 receptor expression in brain regions that mediate opiate addiction, Mol. Pharm. 50, 583–591.Google Scholar
  46. 46.
    Adán, R.A.H. and Gispen, W.H. (1997) Brain melanocortin receptors: from cloning to function, Peptides 18, 1279–1287.CrossRefGoogle Scholar
  47. 47.
    Lankhorst, A.J., Duis, S.E., ter Laak, M.P., Joosten, E.A., Hamers, F.P. and Gispen, W.H. (1996) Functional recovery after central infusion of alpha-melanocyte-stimulating hormone in rats with spinal cord contusion injury, J Neurotrauma 16, 323–31.CrossRefGoogle Scholar
  48. 48.
    Spanagel, R.and Zieglgansberger, W. (1997) Anti-craving compounds for ethanol: new pharmacological tools to study addictive processes, TIPS 18, 54–59.Google Scholar
  49. 49.
    Klusa, V., Svirskis, S., Opmane, B., Muceniece, R.E. and Wikberg, J.E.S. (1999) Behavioural responses of γ-MSH peptides administered into the rat ventral tegmental area, Acta Physiol.Scand. 67, 99–104.CrossRefGoogle Scholar
  50. 50.
    Opmane, B., Klusa, V., Svirskis, S., Bergstrom, L. and Wikberg, J. (2001) The influence of α-, γl-and γ2-MSH on the rat mesolimbic dopaminergic system, in M.Pilmane (ed.),. Faculty of Medicine Scientific Papers, IV (I), University of Latvia, Riga, pp. 75-85.Google Scholar
  51. 51.
    Wikberg, J.E.S., Germane, S., Svirskis, S., Opmane, B., Muceniece, R., Skujins, A., Post, C. and Klusa V. (1999) Comparison of behavioural pharmacology of α-, γl-and γ2-MSH,. Abtracts Soc.Neurosci, 25, 67.Google Scholar
  52. 52.
    Klusa, V., Germane, S., Svirskis, S., Opmane, B. and Wikberg, J.E.S. (2001) The y2-MSH peptide mediates a central analgesic effect via a GABA-ergic mechanism that is independent from activation of melanocortin receptors, Neuropeptides 35, 50–57.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • V. Klusa
    • 1
  • B. Jansone
    • 1
  • S. Svirskis
    • 1
  • J. Rumaks
    • 1
  • R. Muceniece
    • 2
  1. 1.Department of PharmacologyUniversity of LatviaRigaLatvia
  2. 2.Division of Pharmacy Faculty of MedicineUniversity of LatviaRigaLatvia

Personalised recommendations