Riemann-Roch Theorems for Oriented Cohomology

  • I. Panin
  • A. Smirnov
Part of the NATO Science Series book series (NAII, volume 131)

Abstract

The notion of an oriented cohomology pretheory on algebraic varieties is introduced and a Riemann-Roch theorem for ring morphisms between oriented pretheories is proved. An explicit formula for the Todd genus related to a ring morphism is given. The theory is illustrated by classical and other examples.

Keywords

Vector Bundle Line Bundle Chern Class Euler Class Chern Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    M.F. Atiyah. K-theory and reality, The Quaterly Journal of Math., 17 (1966), 68, 367–386.MathSciNetMATHCrossRefGoogle Scholar
  2. [Ad1]
    J.F. Adams. Algebraic topology in the last decade, in The selected works of J.Frank Adams, Ed. J.P. May and C.B. Thomas, Cambridge University Press, vol.I, (1992), 515–536.Google Scholar
  3. [Ad2]
    J.F. Adams. Stable homotopy and generalised cohomology, University of Chicago Press, 1974.Google Scholar
  4. [AH]
    M.F. Atiyah, F.Hirzebruch. Cohomologie-Operationen und charakteristische Klassen, Math.Zeitschr. 77 (1961), 149–187.MathSciNetMATHCrossRefGoogle Scholar
  5. [AW]
    J.F. Adams, G. Walker. On complex Stiefel manifolds, Proc. Camb. Phil. Soc., 61 (1965), 81–103.MathSciNetMATHCrossRefGoogle Scholar
  6. [Ba]
    P. Bahmer. Triangular Witt groups I: The 12-term localization sequence, K-theory, 19 (2000), 311–363.MathSciNetCrossRefGoogle Scholar
  7. [Bl]
    S. Bloch. Algebraic cycles and higher K-theory, Adv. Math., 61 (1986), 267–304.CrossRefGoogle Scholar
  8. [BFM]
    P. Baum, W. Fulton, R.MacPherson. Riemann-Roch and topological K-theory for singular varieties, Acta Math., 143 (1979), 155–192.MathSciNetMATHGoogle Scholar
  9. [Br]
    P. Brosnan. Steenrod operations in Chow theory, www.math.uiuc.edu/K-theory /0370/1999Google Scholar
  10. [BS]
    A. Borel, J.-P. Serre. Le theoreme de Riemann-Roch, Bull. Soc. Math. France, 86 (1958), 97–136.MathSciNetMATHGoogle Scholar
  11. [Bu]
    V.M. Bukhschtaber. The Chern-Dold character in cobordisms, Math.USSR-Sb., 12 (1970), 573–594.CrossRefGoogle Scholar
  12. [BMN]
    V.M. Buhštaber, A.S. Miščenko, S.P. Novikov. Formal groups and their role in the apparatus of algebraic topology, (Russian) Uspehi Mat. Nauk 26 (1971), no. 2(158), 131–154.Google Scholar
  13. [CF]
    P.E. Conner, E.E. Floyd. The relation of cobordism to K-theory, Lect. Notes Math., 28 (1966), Springer-Verlag, Berlin.Google Scholar
  14. [Dy]
    E. Dyer. Relations between cohomology theories, Col. Alg. Topology (1962), 1–10.Google Scholar
  15. [Fu]
    W. Fulton. Intersection theory, Springer-Verlag, 1984.Google Scholar
  16. [FV]
    E. Friedlander, V. Voevodsky. Bivariant cycle cohomology, Cycles, Transfers, and Motivic homology theories, Annals of Math. Studies., 2000, 138–187.Google Scholar
  17. [FW]
    E. Friedlander, M. Walker. Semi-topological K-theory of real varieties, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000), 219–326, Tata Inst. Fund. Res. Stud. Math., 16, Tata Inst. Fund. Res., Bombay, 2002.Google Scholar
  18. [GH]
    T. Geisser, L. Hesselholt. Topological cyclic homology of schemes, Algebraic K-theory (Seattle, WA, 1997), 41–87, Proc. Sympos. Pure Math., 67, Amer. Math. Soc., Providence, RI, 1999.Google Scholar
  19. [Gi]
    H. Gillet. Riemann-Roch Theorems for Higher Algebraic K-Theory, Advances in Math. 40 (1981), 203–289.MathSciNetMATHCrossRefGoogle Scholar
  20. [GN]
    S. Gille, A. Nenashev. Pairings in triangular Witt theory, J. Algebra 261 (2003), no. 2, 292–309.MathSciNetMATHCrossRefGoogle Scholar
  21. [Gra]
    D. Grayson. Adams operations on higher K-theory, K-theory 6 (1992), no.2, 97–111.MathSciNetMATHCrossRefGoogle Scholar
  22. [Gr]
    A. Grothendieck. La théorie des classes de Chern, Bull.Soc.Math.France, 86 (1958), 136–154.MathSciNetGoogle Scholar
  23. [Har]
    R. Hartshorne. Algebraic geometry; Grad. Texts in Mathematics 52, 1977.Google Scholar
  24. [Ha]
    M. Hazewinkel. Formal groups and applications. Academic Press, NY, 1989.Google Scholar
  25. [H]
    F. Hirzebruch. Topological methods in algebraic geometry. Die Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, b. 131, 1966.Google Scholar
  26. [J]
    J. Jouanolou. Une suite exacte de Mayer-Vietoris en K-the’orie algebrique, Lect. Notes Math., 341 (1973), 293–316.MathSciNetCrossRefGoogle Scholar
  27. [K]
    M. Karoubi. K-theory. Grundlehren Der Mathematischen Wissenschaften 226, 1978.Google Scholar
  28. [KW]
    M. Karoubi, C. Weibel. Algebraic and real K-theory of real varieties, Topology 42 (2003), no. 4, 715–742.MathSciNetMATHCrossRefGoogle Scholar
  29. [La]
    P.S. Landweber. Cobordism operations and Hopf algebras, Trans. Amer. Math. Soc. 129 (1967), 94–110.MathSciNetMATHCrossRefGoogle Scholar
  30. [L]
    M. Levine. Mixed motives, Mathematical Surveys and Monographs, 57 (1998) American Mathematical Society, Providence, RI, x+515 ppGoogle Scholar
  31. [LM]
    M. Levine, F. Morel. Cobordism algebrique I, C.R. Acad. Sci. Paris Se’r. I, Math. 332 (2001).Google Scholar
  32. [Me]
    A. Merkurjev. Algebraic oriented cohomology theories, Algebraic number theory and algebraic geometry, 171–193, Contemp. Math., 300, Amer. Math. Soc., Providence, RI, 2002.CrossRefGoogle Scholar
  33. [Mi]
    J.S. Milne. Etale Cohomology, Princeton University Press, 1980.Google Scholar
  34. [Mo]
    F. Morel. Theorie homotopique des schemas, Asterisque 256, (1999).Google Scholar
  35. [N]
    S.P. Novikov. The methods of algebraic topology from the point of view of cobordism theory, Izv.Acad.Nauk SSSR Ser.Mat. 31 (1967) 885–951.= Math.USSR-Izv. 1 (1967) 827-913.Google Scholar
  36. [P1]
    I. Panin. Riemann-Roch theorem for oriented cohomology, www.math.uiuc.edu /K-theory/0552/2002Google Scholar
  37. [P2]
    I. Panin. Push-forwards in oriented cohomology theories of algebraic varieties: II, www.math.uiuc.edu/K-theory/0619/2003Google Scholar
  38. [PS]
    I. Panin, A. Smirnov. Push-forwards in oriented cohomology theories of algebraic varieties, www.math.uiuc.edu/K-theory/0459/2000Google Scholar
  39. [Pu]
    O. Pushin. Higher Chern classes and Steenrod operations in motivic cohomology, www.math.uiuc.edu/K-theory/0536/2002Google Scholar
  40. [Qu1]
    D. Quillen. On the formal group laws of unoriented and complex cobordism theory, Bull. AMS 75(1969), 1293–1298.MathSciNetMATHCrossRefGoogle Scholar
  41. [Qu2]
    D. Quillen. Higher algebraic K-theory:I, Lect.Notes Math. 341 (1973), 85–147.MathSciNetCrossRefGoogle Scholar
  42. [Qu3]
    D. Quillen. Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Mathematics 7 (1971), 29–56.MathSciNetMATHCrossRefGoogle Scholar
  43. [S]
    A. Suslin. Higher Chow groups and étale cohomology, in Cycles, Transfers, and Motivic homology theories, Annals of Math. Studies, 143 (2000), 239–254.MathSciNetGoogle Scholar
  44. [So]
    Ch. Soule. Operations en K-theory algebrique, Canad. J. Math. 37 (1985), no.3, 488–550.MathSciNetMATHCrossRefGoogle Scholar
  45. [SV]
    A. Suslin, V.Voevodsky. Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetics and geometry of algebraic cycles, 117–189, NATO Sci.Ser.C Math.Phys.Sci., 548, Kluwer Acad.Publ., Dortrecht, 2000.CrossRefGoogle Scholar
  46. [V]
    V. Voevodsky. Triangulated Categories of Motives Over a Field, in Cycles, Transfers, and Motivic homology theories, Annals of Math. Studies., 2000, 188–238.Google Scholar
  47. [V1]
    V. Voevodsky. A1-Homotopy theory, Doc. Math., Extra Vol. ICM 1998(I), 417–442.Google Scholar
  48. [V2]
    V. Voevodsky. Reduced power operation in motivic cohomology, www.math.uiuc. edu/K-theory/0487, 2001.Google Scholar
  49. [V3]
    V. Voevodsky. Motivic cohomology are isomorphic to higher Chow groups, www. math.uiuc.edu/K-theory/0378, 1999.Google Scholar
  50. [Wa]
    C. Walter. Grothendieck-Witt groups of projective bundles, www. math.uiuc.edu/K-theory/0644, 2003Google Scholar
  51. [W]
    C. Weibel. Products in higher Chow groups and motivic cohomology, Algebraic K-theory (Seattle, WA, 1997), 305–315, Proc. Sympos. Pure Math., 67, Amer. Math. Soc., Providence, RI, 1999.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • I. Panin
    • 1
  • A. Smirnov
    • 1
  1. 1.Steklov InstituteSt PetersburgRussia

Personalised recommendations