On the Motivic π0 of the Sphere Spectrum

  • Fabien Morel
Part of the NATO Science Series book series (NAII, volume 131)


Let d ≥ 1 and X a pointed topological space. We denote as usual by π d (X) the d-th homotopy group of X. One of the starting point in homotopy theory is the following result: Theorem 1.1.1. Let n > 0 be any integer. 1) If d < n then π d (S n ) = 0; 2) If d = n then π n (S n ) = ℤ ; 2) (Serre) If d > n then π d (S N ) is a finite group unless n is even and d = 2n - 1 in which case it a direct sum ofand a finite group.


Full Subcategory HOMOTOPY Theory Triangulate Category Witt Ring Adams Spectral Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Arason and R. Elman, “Powers of the fundamental ideal in the Witt ring.” J. Algebra 239 (2001), no. 1, 150–160.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    P.Balmer “Triangular Witt groups II” Math. Z. 236 (2001), 351–382.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    J. Barge et F. Morel, Cohomologie des groupes linéaires, K-théorie de Milnor et groupes de Witt, C.R. Acad. Sci. Paris, t. 328, Série I, p. 191–196, 1999.Google Scholar
  4. [4]
    A.A. Beilinson; J. Bernstein; P. Deligne, Faisceaux pervers, (French) [Perverse sheaves] Analysis and topology on singular spaces, I (Luminy, 1981), 5–171, Astrisque, 100, Soc. Math. France, Paris, 1982.Google Scholar
  5. [5]
    A. K. Bousfield and E. M. Friedlander, Homotopy theory of Γ-spaces, spectra, and bisimplicial sets. Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, pp. 80–130, Lecture Notes in Math., 658, Springer, Berlin, 1978.CrossRefGoogle Scholar
  6. [6]
    J. Hornbostel “A1-representability of Hermitian K-theory and Witt groups.” Preprint (2002),
  7. [7]
    P. Hu, S-modules in the category of schemes, preprint.
  8. [8]
    P. Hu and I. Kriz, “The Steinberg relation in A1-stable homotopy.” Internat. Math. Res. Notices 2001, no. 17, 907–912.MathSciNetCrossRefGoogle Scholar
  9. [9]
    J.F. Jardine, Simplicial presheaves. J. Pure Appl. Algebra 47 (1987), no. 1, 35–87.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    J. F. Jardine, “Motivic symmetric spectra”, Doc. Math. 5 (2000), 445–553.MathSciNetzbMATHGoogle Scholar
  11. [11]
    M. Levine, Algebraic cobordism II, preprint.
  12. [12]
    M. Levine and F. Morel, Cobordisme algébrique I & II, Janvier 2001, Notes aux C.R.A.S. t. 332, Serie I, p. 723–728 et p 815-820, 2001.Notes aux C.R.A.S.Google Scholar
  13. [13]
    M. Levine and F. Morel, Algebraic cobordism I, preprint,
  14. [14]
    H. Lindel, “On the Bass-Quillen conjecture concerning projective modules over polynomial rings.” Inventiones Math. 65 (1981/82) 319–323MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    J. Milnor, Algebraic K-theory and quadratic forms. Invent. Math. 9 1969/1970 318–344.MathSciNetCrossRefGoogle Scholar
  16. [16]
    F. Morel, Suite spectrale d’Adams et invariants cohomologiques des formes quadratiques, C.R. Acad. Sci. Paris, t. 328, Série I, p. 963–968, 1999.Google Scholar
  17. [17]
    F. Morel, Sur les puissances de l’ideal fondamental de l’anneau de Witt, preprint, available at
  18. [18]
    F. Morel, Suites spectrale d’Adams et conjectures de Milnor, en préparation.Google Scholar
  19. [19]
    F. Morel, The stable A1-connectivity theorems, preprint, available at
  20. [20]
    F. Morel, The motivic π0 of the sphere spectrum, in preparation.Google Scholar
  21. [21]
    F. Morel, Rationalized motivic sphere spectrum and rational motivic cohomology, in preparation.Google Scholar
  22. [22]
    F. Morel, A1-derived category, mixed motives and the stable Hurewicz theorem, in preparation.Google Scholar
  23. [23]
    F. Morel, An introduction to A1-homotopy theory, Lectures given at the ICTP Trieste summer school, July 2002. To appear. Available at
  24. [24]
    F. Morel and V. Voevodsky “A1-homotopy theory of schemes.” Inst. Hautes études Sci. Publ. Math. No. 90 (1999), 45–143 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    Y. Nisnevich, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory. Algebraic K-theory: connections with geometry and topology (Lake Louise, AB, 1987), 241–342, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 279, Kluwer Acad. Publ., Dordrecht, 1989.Google Scholar
  26. [26]
    D. Orlov, A. Vishik and V. Voevodsky, An exact sequence for Milnor’s K-theory with applications to quadratic forms,
  27. [27]
    M. Rost, Chow groups with coefficients. Doc. Math. 1 (1996), No. 16, 319–393 (electronic).MathSciNetzbMATHGoogle Scholar
  28. [28]
    W. Scharlau “Quadratic and Hermitian forms.” Grundlehren der Mathematischen Wissenschaften, 270 Springer-Verlag, Berlin, 1985. x+421 pp.Google Scholar
  29. [29]
    V. Voevodsky. The A1-homotopy theory. Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998). Doc. Math. 1998, Extra Vol. I, 579–604 (electronic).Google Scholar
  30. [30]
    V. Voevodsky, On 2-torsion in motivic cohomology, preprint,
  31. [31]
    V. Voevodsky, Cancellation theorem, preprint,
  32. [32]
    V. Voevodsky, A. Suslin and E. Friedlander “Cycles, transfers, and motivic homology theories.” Annals of Mathematics Studies, 143. Princeton University Press, Princeton, NJ, 2000. vi+254 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Fabien Morel
    • 1
  1. 1.Institut de MathématiquesUniversité Paris 7JussieuParisFrance

Personalised recommendations