In-Service and Prospective Teachers’ Views About Modelling Tasks in the Mathematics Classroom – Results of a Quantitative Empirical Study

Conference paper
Part of the International Perspectives on the Teaching and Learning of Mathematical Modelling book series (IPTL, volume 1)

Abstract

Views of mathematics teachers about tasks with modelling relevance are likely to influence the ways teachers create learning opportunities in the classroom. As quantitative empirical evidence about such task-related views is scarce, this chapter reports on corresponding findings. In particular, views of prospective and in-service teachers are compared and possibilities of improving professional knowledge are identified.

Keywords

Mathematics Teacher Prospective Teacher Mathematics Classroom Learning Opportunity Instructional Practice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ball, D., Thames, L., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.CrossRefGoogle Scholar
  2. Biza, I., Nardi, E., & Zachariades, T. (2007). Using tasks to explore teacher knowledge in situation-specific contexts. Journal of Mathematics Teacher Education, 10, 301–309.CrossRefGoogle Scholar
  3. Blomhøj, M., & Jensen, T. H. (2003). Developing mathematical modeling competence: conceptual clarification and educational planning. Teaching Mathematics and its Applications, 22(3), 123–139.CrossRefGoogle Scholar
  4. Blum, W., Galbraith, P. L., Henn, H. W., & Niss, M. (Eds.). (2007). Modeling and applications in mathematics education. The 14th ICMI study. New York: Springer.Google Scholar
  5. Bromme, R. (1992). Der Lehrer als Experte. Zur Psychologie des professionellen Wissens. [The teacher as an expert. On the psychology of professional knowledge]. Bern: Hans Huber.Google Scholar
  6. Hosenfeld, I. (2008). Diagnostische Kompetenzen von Mathematiklehrkräften und Leistung. Presentation on 26.08.2009, 71st AEPF Conference, Kiel.Google Scholar
  7. Kultusministerkonferenz (KMK). (2004). Bildungsstandards im Fach Mathematik für den mitt­leren Schulabschluss. München: Wolters Kluwer.Google Scholar
  8. Kuntze, S. & Reiss, K. (2005). Situation-specific and generalized components of professional knowledge of mathematics teachers. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (PME), (Vol. 3. pp. 225–232). Melbourne: University.Google Scholar
  9. Kuntze, S., & Zöttl, L. (2008). Überzeugungen von Lehramtsstudierenden zum Lernpotential von Aufgaben mit Modellierungsgehalt. Mathematica Didactica, 31, 46–71.Google Scholar
  10. Maaß, K. (2006). What are modeling competencies? Zentralblatt für Didaktik der Mathematik, 38(2), 115–118.CrossRefGoogle Scholar
  11. Neubrand, J. (2002). Eine Klassifikation mathematischer Aufgaben zur Analyse von Unterrichtssi­tuationen. Hildesheim: Franzbecker.Google Scholar
  12. OECD. (2003). The PISA 2003 assessment framework – Mathematics, reading, science and problem solving knowledge and skills. [Retrieved from http://www.pisa.oecd. org/dataoecd/46/14/33694881.pdf on 15.01.2010].
  13. Reiss, K., Kuntze, S., Pekrun, R., & Ufer, S. (2008). Die Kompetenz “Modellieren” in Verbindung mit unterschiedlichen Leitideen – von Zielen der Bildungsstandards zu Fragen der Konzeption von Kompetenzmodellen. In E. Vasarhélyi (Ed.), Beiträge zum Mathematikunterricht 2008 (pp. 185–188). Münster: WTM-Verlag.Google Scholar
  14. Schwarz, B., Kaiser, G., & Buchholtz, N. (2008). Vertiefende qualitative Analysen zur professionellen Kompetenz angehender Mathematiklehrkräfte am Beispiel von Modellierung und Realitätsbezügen. In S. Blömeke, G. Kaiser, & R. Lehmann (Eds.), Professionelle Kompetenz angehender Lehrerinnen und Lehrer (pp. 391–424). Münster: Waxmann.Google Scholar
  15. Shulman, L. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–14.Google Scholar
  16. v. Hofe, R. (2008). Zur Entwicklung mathematischer Grundbildung in der Sekundarstufe I – Ergebnisse aus der Längsschnittstudie PALMA. [Presentation on 05.06.2008, University of Munich].Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Ludwigsburg University of EducationLudwigsburgGermany

Personalised recommendations