Advertisement

The Temperature Dependence of Chemical Shifts of Individual Peaks in the 13C NMR Spectrum of the Fullerite C60, Doped with Molecular Oxygen

  • O. V. Val’ba
  • E. M. Anokhin
  • A. V. Maksimychev
  • A. Michtchenko
  • D. V. Schur
  • Yu. M. ShulgaEmail author
Conference paper
  • 1k Downloads
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC, volume 2)

Abstract

The methods of solid-state high-resolution NMR have been applied to investigate samples of fullerite C60, doped with molecular oxygen. It was found that in the case of well-crystallized (O2)0.44C60 sample the temperature dependence of the relative chemical shift of the satellite peaks reveals jump nearly the orientational phase transition temperature. At temperatures above the phase transition, the shift due to the redistribution of electron density was ~ 0.1 ppm, which corresponds to the transfer of 0.05 electron from O2 molecule to the fullerene molecule.

Keywords

Fullerite C60(O2)x Phase transition Oxygen content Electron density NMR spectrum Chemical shift Temperature 

Notes

Acknowledgement

This work was supported by the Russian Foundation for Basic Research (project No 09-03-00597-a).

References

  1. 1.
    Yannoni CS, Johnson RD, Meijer G et al (1991) Carbon-13 NMR study of the C60 cluster in the solid state: molecular motion and carbon chemical shift anisotropy. J Phys Chem 95:9–10CrossRefGoogle Scholar
  2. 2.
    Assink RA, Shirber JE, Loy DA et al (1992) Intercalation of molecular species into the interstitial sites of fullerene. J Mater Res 7:2136–2143CrossRefGoogle Scholar
  3. 3.
    Gu M, Tang TB, Hu C, Feng D (1998) Order-disorder transition in solid C60 charged with O2 and with N2: a study with dielectric and 13C NMR spectroscopies. Phys Rev B 58:659–663CrossRefGoogle Scholar
  4. 4.
    Gu M, Wang S, Wu J et al (2005) NMR evidence for the charge transfer from interstitial NO or O2 to molecule C60 in solid C60. Chem Phys Lett 34:167–170CrossRefGoogle Scholar
  5. 5.
    Belahmer Z, Bernier P, Firlej L et al (1993) Intercalation of O2 in solid C60 and molecular-rotation hindrance. Phys Rev B 47:980–983CrossRefGoogle Scholar
  6. 6.
    Bernier P, Lukyanchuk I, Belahmer Z et al (1996) High-resolution 13C NMR study of oxygen intercalation in C60. Phys Rev 53:7535–7538CrossRefGoogle Scholar
  7. 7.
    Renker B, Schober H, Fernandez-Diaz MT et al (2000) Structure and dynamics of C60 intercalation compounds: N2C60 and O2C60. Phys Rev B 61:13960–13968CrossRefGoogle Scholar
  8. 8.
    Shulga YM, Martynenko VM, Anokhin EM et al (2010) Structure of C60 intercalated with molecular oxygen. Chem Phys 4:543–547 (in Russian)Google Scholar
  9. 9.
    Shulga YM, Martynenko VM, Shestakov AF et al (2006) Doping fullerite with molecular oxygen at low temperature and pressure. Izv AN Ser Khim 55(4):687–696 (in Russian)Google Scholar
  10. 10.
    Pevsner B, Hebard AF (1997) Role of molecular oxygen and other impurities in the electrical transport and dielectric properties of C60 films. Phys Rev B 55:16439–16449CrossRefGoogle Scholar
  11. 11.
    Pennington CH, Stenger VA (1996) Nuclear magnetic resonance of C60 and fulleride superconductors. Rev Mod Phys 68:856–910CrossRefGoogle Scholar
  12. 12.
    Tarasov VP, Muravlev YV, Izotov DE (2001) 13C NMR of fullerite C60 at temperatures 295–1000 K. Dokl Phys Chem 381:271–274 (in Russian)CrossRefGoogle Scholar
  13. 13.
    Jameson CJ (1991) Gas-phase NMR spectroscopy. Chem Rev 91:1375–1395CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • O. V. Val’ba
    • 1
  • E. M. Anokhin
    • 1
  • A. V. Maksimychev
    • 1
  • A. Michtchenko
    • 2
  • D. V. Schur
    • 3
  • Yu. M. Shulga
    • 4
    Email author
  1. 1.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia
  2. 2.Department of Electronic EngineeringInstituto Politecnico Nacional, SEPI-ESIME-IPNMexicoMexico
  3. 3.Institute for Problems of Materials Science of NAS of UkraineKievUkraine
  4. 4.Institute of Problems of Chemical Physics of Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations