Chromosome 9
Abstract
The lightly-stained secondary constriction of chromosome 9 by plain Giemsa distinguishes it from other C-group chromosomes (Patau et al., Lancet i:790–793, 1960; Ferguson-Smith et al., Cytogenetics 1:325–343, 1962; Palmer and Funderburk, Cytogenetics 4:261–276, 1965). By G-banding, the secondary constriction itself stains lightly, but bands on either side of the centromere typically stain as intensely as the pericentromeric regions of other chromosomes (Fig. 14.1a–i). By C-banding or DA/DAPI staining, the entire region, including the pericentromeric bands usually consists of a uniform block of dark or brightly staining heterochromatin (Fig. 14.1m, n). Sometimes, however, blocks of heterochromatin will appear to be separated by a G-positive, C-negative band (Fig. 14.1j, k). More rarely, such C-negative bands can be quite striking and have been the object of considerable study (see Euchromatic Variants). The 9qh region is also strikingly stained by Giemsa-11 (Fig. 2.4) (Bobrow et al., Nature New Biol 238:122–124, 1972; Wyandt et al., Exp Cell Res 102:85–94, 1976).
Keywords
Down Syndrome Pericentric Inversion Secondary Constriction Complete Inversion Idiopathic Mental RetardationReferences
- 1.Patau K, Smith DW, Therman E, Inhorn SL (1960) Multiple congenital anomalies caused by an extra chromosome. Lancet 1:790–793PubMedCrossRefGoogle Scholar
- 2.Ferguson-Smith MA, Ferguson-Smith ME, Ellis OM, Dickson M (1962) The site and relative frequencies of secondary constrictions in human somatic chromosomes. Cytogenetics 1:325–343PubMedCrossRefGoogle Scholar
- 3.Palmer CG, Funderburk S (1965) Secondary constrictions in human chromosomes. Cytogenetics 4:261–276PubMedCrossRefGoogle Scholar
- 4.Bobrow M, Madan K, Pearson PL (1972) Staining of some specific regions of human chromosomes, particularly the secondary constriction of No. 9. Nature New Biol 238:122–124PubMedGoogle Scholar
- 5.Wyandt HE, Wysham DG, Minden SK, Anderson RS, Hecht F (1976) Mechanisms of Giemsa banding of chromosomes. Exp Cell Res 102:85–94PubMedCrossRefGoogle Scholar
- 6.Lubs HA, Patil SR, Kimberling WJ, Brown J, Cohen M, Gerald P, Hecht F, Myrianthopoulos N, Summit RL (1977) Q and C-banding polymorphisms in 7 and 8 year old children: racial differences and clinical significance. In: Hook EB, Porter IH (eds) Population cytogenetic studies in humans. Academic, New York, pp 133–159Google Scholar
- 7.Funderburk SJ, Guthrie D, Lind RC, Müller HM, Sparkes RS, Westlake JR (1978) Minor chromosome variants in child psychiatric patients. Am J Med Genet 1(3):301–308PubMedCrossRefGoogle Scholar
- 8.Soudek D, Sroka H (1979) Chromosomal variants in mentally retarded and normal men. Clin Genet 16:109–116PubMedCrossRefGoogle Scholar
- 9.Palmer CG, Schroder J (1971) A familial variant of chromosome 9. J Med Genet 8:202–208PubMedCrossRefGoogle Scholar
- 10.Fitzgerald PH (1973) The nature and inheritance of an elongated secondary constriction on chromosome 9 of man. Cytogenet Cell Genet 12:404–413PubMedCrossRefGoogle Scholar
- 11.Ford JH, Lester P (1978) Chromosomal variants and nondisjunction. Cytogenet Cell Genet 21:300–303PubMedCrossRefGoogle Scholar
- 12.Eiben B, Leipoldt M, Rammelsberg O, Krause W, Engel W (1987) High incidence of minor chromosomal variants in teratozoospermic males. Andrologia 19(6):684–687PubMedCrossRefGoogle Scholar
- 13.Del Porto G, D’Alessandro E, Grammatico P, Coghi IM, DeSanctis S, Giambenedetti M, Vaccarella C, Fabi R, Marciano MF, Nicotra M (1993) Chromosome heteromorphisms and early recurrent abortions. Hum Reprod 8(5):755–758PubMedGoogle Scholar
- 14.Hsu LYF, Benn PA, Tannenbaum HL, Perlis TE, Carlson AD (1987) Chromosome polymorphism of 1, 9 16 and Y in 4 major ethnic groups: a large prenatal study. Am J Med Genet 26:95–101Google Scholar
- 15.Boue J, Taillemite JC, Hazael-Massieux P, Leonard C, Boue A (1975) Association of pericentric inversion of chromosome 9 and reproductive failure in ten unrelated families. Humangenetik 30:217–224PubMedCrossRefGoogle Scholar
- 16.Madan K, Bobrow M (1974) Structural variation in chromosome no. 9. Annals Genet 17:81–86Google Scholar
- 17.Hansmann I (1976) Structural variability of human chromosome 9 in relation to its evolution. Hum Genet 31:247–262PubMedCrossRefGoogle Scholar
- 18.Vine DT, Yarkoni S, Cohen MM (1976) Inversion homozygosity of chromosome no. 9 in a highly inbred kindred. Am J Hum Genet 28:203–207PubMedGoogle Scholar
- 19.Metaxotou C, Kalpini-Mavrou A, Panagou M, Tsengi C (1978) Polymorphism of chromosome 9 in 600 Greek subjects. Am J Hum Genet 30:85–89PubMedGoogle Scholar
- 20.Howard-Peebles PN, Stoddard GR (1976) A satellited Yq chromosome associated with trisomy 21 and an inversion of chromosome 9. Hum Genet 34:223–225PubMedCrossRefGoogle Scholar
- 21.Teo SH, Tan M, Knight L, Yeo SH, Ng I (1995) Pericentric inversion 9 –incidence and clinical significance. Ann Acad Med, Singapore. 24:302–304Google Scholar
- 22.Schinzel A, Hayashi K, Schmid W (1974) Mosaic trisomy and pericentric inversion of chromosome 9 in a malformed boy. Humangenetik 25:171–177PubMedCrossRefGoogle Scholar
- 23.Bowen P, Ying KL, Chung GSH (1974) Trisomy 9 mosaicism in a newborn infant with multiple malformations. J Pediat 85:95–97PubMedCrossRefGoogle Scholar
- 24.Seabright M, Gregson M, Mould S (1976) Trisomy 9 associated with an enlarged 9qh segment in a liveborn. Hum Genet 34:323–325PubMedCrossRefGoogle Scholar
- 25.Sutherland GR, Gardiner AJ, Carter RF (1976) Familial pericentric inversion of chromosome 19, inv(19)(p13q13) with a note on genetic counseling of pericentric inversion carriers. Clin Genet 10:54–59PubMedCrossRefGoogle Scholar
- 26.Saunders GF, Hsu TC, Getz MJ, Simes EL, Arrighi F (1972) Locations of human satellite DNA in human chromosomes. Nature New Biology 236:244–246CrossRefGoogle Scholar
- 27.Jones KW, Corneo G (1971) Location of satellite and homogeneous DNA sequences on human chromosomes. Nat New Biol 233(43):268–271PubMedGoogle Scholar
- 28.Ginelli E, Corneo G (1976) The organization of repeated DNA sequences in the human genome. Chromosoma (Berl) 56:55–69CrossRefGoogle Scholar
- 29.Buhler EM, Tsuchimoto T, Jurik LP, Stalder GR (1975) Satellite DNA III and alkaline Giemsa staining. Humangenetik 26:329–333PubMedGoogle Scholar
- 30.Corneo G, Ginelli E, Polli EJ (1968) Isolation of complementary strands of a human satellite DNA. J Mol Biol 33:331PubMedCrossRefGoogle Scholar
- 31.Miklos GLG, John B (1979) Heterochromatin and satellite DNA in man: Properties and prospects. Am J Hum Genet 31:264–280PubMedGoogle Scholar
- 32.Gosden JR, Mitchell AR, Buckland RA, Clayton RP, Evans HJ (1975) The location of four human satellite DNAs on human chromosomes. Exp Cell Res 92:148–158PubMedCrossRefGoogle Scholar
- 33.Manuelidis L, Wu JC (1978) Homology between human and simian repeated DNA. Nature 276:92–94PubMedCrossRefGoogle Scholar
- 34.Manuelidis L (1978) Complex and simple sequences in human repeated DNAs. Chromosoma 66:1–22PubMedCrossRefGoogle Scholar
- 35.Willard HF (1985) Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet 37:524–532PubMedGoogle Scholar
- 36.Waye JS, Willard HF (1989) Human α-satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA. Proc Natl Acad Sci U S A 86:6250–6254PubMedCrossRefGoogle Scholar
- 37.Luke S, Verma RS, Conte RA, Mathews T (1992) Molecular characterization of the secondary constriction region (qh) of human chromosome 9 with pericentric inversion. J Cell Sci 103:919–923PubMedGoogle Scholar
- 38.Ramesh KH, Verma RS (1996) Breakpoints in alpha, beta and satellite III DNA sequences of chromosome 9 result in a variety of pericentric inversions. J Med Genet 33:395–398PubMedCrossRefGoogle Scholar
- 39.Samonte RV, Conte RA, Ramesh KH, Verma RS (1996) Molecular cytogenetic characterization of breakpoints involving pericentric inversions of human chromosome 9. Hum Genet 98:576–580PubMedCrossRefGoogle Scholar
- 40.Vance GH, Curtis CA, Heerema NA, Schwartz S, Palmer CG (1997) An apparently acrocentric marker chromosome originating from 9p with a functional centromere without detectable alpha and beta satellite sequences. Am J Hum Genet 71:436–442CrossRefGoogle Scholar
- 41.Buckton KE, O’Riordan ML, Ratcliffe S, Slight J, Mitchell M, McBeath S, Keay AJ, Barr D, Short M (1980) A G-band study of chromosomes in liveborn infants. Ann Hum Genet 43:227–239PubMedCrossRefGoogle Scholar
- 42.Sutherland GR, Eyre H (1981) Two unusual G-band variants of the short arm of chromosome 9. Clin Genet 19:331–334PubMedCrossRefGoogle Scholar
- 43.Jalal SM, Kukolich MK, Garcia M, Day DW (1990) Euchromatic 9q+ heteromorphism in a family. Am J Hum Genet 37:155–156CrossRefGoogle Scholar
- 44.Knight LA, Soon GM, Tan M (1993) Extra G positive band on the long arm of chromosome 9. J Med Genet 30:613PubMedCrossRefGoogle Scholar
- 45.Roland B, Chernos JE, Cox D (1992) M. 9qh+ variant band in two families. Am J Med Genet 42:137–138PubMedCrossRefGoogle Scholar
- 46.Verma RS, Luke S, Brennan JP, Mathews T, Conte RA, Macera MJ (1993) Molecular topography of the secondary constriction region (qh) of the human chromosome 9 with an unusual euchromatic band. Am J Hum Genet 52:981–986PubMedGoogle Scholar
- 47.Wang JC, Miller WA (1994) Molecular cytogenetic characterization of two types of chromosome 9 variants. Cytogenet Cell Genet 67:190–192PubMedCrossRefGoogle Scholar
- 48.Macera MJ, Verma RS, Conte RA, Bialer MG, Klein VR (1995) Mechanisms of the origin of a G-positive band within the secondary constriction region of human chromosome 9. Cytogenet Cell Genet 69:235–239PubMedCrossRefGoogle Scholar
- 49.Silengo MC, Davi GF, Franeschini P (1982) Extra band in the 9qh+ chromosome in a normal father and in his child with multiple congenital anomalies. Hum Genet 60:294PubMedCrossRefGoogle Scholar
- 50.Luke S, Verma RS, PeBenito R, Macera M (1991) J. Inversion-duplication of bands q13–q21 of human chromosome 9. Am J Med Genet 40:57–60PubMedCrossRefGoogle Scholar
- 51.Docherty Z, Hulten MA (1985) Extra euchromatic band in the qh region of chromosome 9. J Med Genet 22:156–157PubMedCrossRefGoogle Scholar
- 52.Docherty Z, Hulten MA (1993) Rare variant of chromosome 9 (letter). Am J Med Genet 45:105–106PubMedCrossRefGoogle Scholar
- 53.Haddad BR, Lin AE, Wyandt H, Milunsky A (1996) Molecular cytogenetic characterization of the first familial case of partial 9p duplication (p22p24). J Med Genet 33:1045–1047PubMedCrossRefGoogle Scholar