Chromosome 9

Chapter

Abstract

The lightly-stained secondary constriction of chromosome 9 by plain Giemsa distinguishes it from other C-group chromosomes (Patau et al., Lancet i:790–793, 1960; Ferguson-Smith et al., Cytogenetics 1:325–343, 1962; Palmer and Funderburk, Cytogenetics 4:261–276, 1965). By G-banding, the secondary constriction itself stains lightly, but bands on either side of the centromere typically stain as intensely as the pericentromeric regions of other chromosomes (Fig. 14.1a–i). By C-banding or DA/DAPI staining, the entire region, including the pericentromeric bands usually consists of a uniform block of dark or brightly staining heterochromatin (Fig. 14.1m, n). Sometimes, however, blocks of heterochromatin will appear to be separated by a G-positive, C-negative band (Fig. 14.1j, k). More rarely, such C-negative bands can be quite striking and have been the object of considerable study (see Euchromatic Variants). The 9qh region is also strikingly stained by Giemsa-11 (Fig. 2.4) (Bobrow et al., Nature New Biol 238:122–124, 1972; Wyandt et al., Exp Cell Res 102:85–94, 1976).

Keywords

Down Syndrome Pericentric Inversion Secondary Constriction Complete Inversion Idiopathic Mental Retardation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Patau K, Smith DW, Therman E, Inhorn SL (1960) Multiple congenital anomalies caused by an extra chromosome. Lancet 1:790–793PubMedCrossRefGoogle Scholar
  2. 2.
    Ferguson-Smith MA, Ferguson-Smith ME, Ellis OM, Dickson M (1962) The site and relative frequencies of secondary constrictions in human somatic chromosomes. Cytogenetics 1:325–343PubMedCrossRefGoogle Scholar
  3. 3.
    Palmer CG, Funderburk S (1965) Secondary constrictions in human chromosomes. Cytogenetics 4:261–276PubMedCrossRefGoogle Scholar
  4. 4.
    Bobrow M, Madan K, Pearson PL (1972) Staining of some specific regions of human chromosomes, particularly the secondary constriction of No. 9. Nature New Biol 238:122–124PubMedGoogle Scholar
  5. 5.
    Wyandt HE, Wysham DG, Minden SK, Anderson RS, Hecht F (1976) Mechanisms of Giemsa banding of chromosomes. Exp Cell Res 102:85–94PubMedCrossRefGoogle Scholar
  6. 6.
    Lubs HA, Patil SR, Kimberling WJ, Brown J, Cohen M, Gerald P, Hecht F, Myrianthopoulos N, Summit RL (1977) Q and C-banding polymorphisms in 7 and 8 year old children: racial differences and clinical significance. In: Hook EB, Porter IH (eds) Population cytogenetic studies in humans. Academic, New York, pp 133–159Google Scholar
  7. 7.
    Funderburk SJ, Guthrie D, Lind RC, Müller HM, Sparkes RS, Westlake JR (1978) Minor chromosome variants in child psychiatric patients. Am J Med Genet 1(3):301–308PubMedCrossRefGoogle Scholar
  8. 8.
    Soudek D, Sroka H (1979) Chromosomal variants in mentally retarded and normal men. Clin Genet 16:109–116PubMedCrossRefGoogle Scholar
  9. 9.
    Palmer CG, Schroder J (1971) A familial variant of chromosome 9. J Med Genet 8:202–208PubMedCrossRefGoogle Scholar
  10. 10.
    Fitzgerald PH (1973) The nature and inheritance of an elongated secondary constriction on chromosome 9 of man. Cytogenet Cell Genet 12:404–413PubMedCrossRefGoogle Scholar
  11. 11.
    Ford JH, Lester P (1978) Chromosomal variants and nondisjunction. Cytogenet Cell Genet 21:300–303PubMedCrossRefGoogle Scholar
  12. 12.
    Eiben B, Leipoldt M, Rammelsberg O, Krause W, Engel W (1987) High incidence of minor chromosomal variants in teratozoospermic males. Andrologia 19(6):684–687PubMedCrossRefGoogle Scholar
  13. 13.
    Del Porto G, D’Alessandro E, Grammatico P, Coghi IM, DeSanctis S, Giambenedetti M, Vaccarella C, Fabi R, Marciano MF, Nicotra M (1993) Chromosome heteromorphisms and early recurrent abortions. Hum Reprod 8(5):755–758PubMedGoogle Scholar
  14. 14.
    Hsu LYF, Benn PA, Tannenbaum HL, Perlis TE, Carlson AD (1987) Chromosome polymorphism of 1, 9 16 and Y in 4 major ethnic groups: a large prenatal study. Am J Med Genet 26:95–101Google Scholar
  15. 15.
    Boue J, Taillemite JC, Hazael-Massieux P, Leonard C, Boue A (1975) Association of pericentric inversion of chromosome 9 and reproductive failure in ten unrelated families. Humangenetik 30:217–224PubMedCrossRefGoogle Scholar
  16. 16.
    Madan K, Bobrow M (1974) Structural variation in chromosome no. 9. Annals Genet 17:81–86Google Scholar
  17. 17.
    Hansmann I (1976) Structural variability of human chromosome 9 in relation to its evolution. Hum Genet 31:247–262PubMedCrossRefGoogle Scholar
  18. 18.
    Vine DT, Yarkoni S, Cohen MM (1976) Inversion homozygosity of chromosome no. 9 in a highly inbred kindred. Am J Hum Genet 28:203–207PubMedGoogle Scholar
  19. 19.
    Metaxotou C, Kalpini-Mavrou A, Panagou M, Tsengi C (1978) Polymorphism of chromosome 9 in 600 Greek subjects. Am J Hum Genet 30:85–89PubMedGoogle Scholar
  20. 20.
    Howard-Peebles PN, Stoddard GR (1976) A satellited Yq chromosome associated with trisomy 21 and an inversion of chromosome 9. Hum Genet 34:223–225PubMedCrossRefGoogle Scholar
  21. 21.
    Teo SH, Tan M, Knight L, Yeo SH, Ng I (1995) Pericentric inversion 9 –incidence and clinical significance. Ann Acad Med, Singapore. 24:302–304Google Scholar
  22. 22.
    Schinzel A, Hayashi K, Schmid W (1974) Mosaic trisomy and pericentric inversion of chromosome 9 in a malformed boy. Humangenetik 25:171–177PubMedCrossRefGoogle Scholar
  23. 23.
    Bowen P, Ying KL, Chung GSH (1974) Trisomy 9 mosaicism in a newborn infant with multiple malformations. J Pediat 85:95–97PubMedCrossRefGoogle Scholar
  24. 24.
    Seabright M, Gregson M, Mould S (1976) Trisomy 9 associated with an enlarged 9qh segment in a liveborn. Hum Genet 34:323–325PubMedCrossRefGoogle Scholar
  25. 25.
    Sutherland GR, Gardiner AJ, Carter RF (1976) Familial pericentric inversion of chromosome 19, inv(19)(p13q13) with a note on genetic counseling of pericentric inversion carriers. Clin Genet 10:54–59PubMedCrossRefGoogle Scholar
  26. 26.
    Saunders GF, Hsu TC, Getz MJ, Simes EL, Arrighi F (1972) Locations of human satellite DNA in human chromosomes. Nature New Biology 236:244–246CrossRefGoogle Scholar
  27. 27.
    Jones KW, Corneo G (1971) Location of satellite and homogeneous DNA sequences on human chromosomes. Nat New Biol 233(43):268–271PubMedGoogle Scholar
  28. 28.
    Ginelli E, Corneo G (1976) The organization of repeated DNA sequences in the human genome. Chromosoma (Berl) 56:55–69CrossRefGoogle Scholar
  29. 29.
    Buhler EM, Tsuchimoto T, Jurik LP, Stalder GR (1975) Satellite DNA III and alkaline Giemsa staining. Humangenetik 26:329–333PubMedGoogle Scholar
  30. 30.
    Corneo G, Ginelli E, Polli EJ (1968) Isolation of complementary strands of a human satellite DNA. J Mol Biol 33:331PubMedCrossRefGoogle Scholar
  31. 31.
    Miklos GLG, John B (1979) Heterochromatin and satellite DNA in man: Properties and prospects. Am J Hum Genet 31:264–280PubMedGoogle Scholar
  32. 32.
    Gosden JR, Mitchell AR, Buckland RA, Clayton RP, Evans HJ (1975) The location of four human satellite DNAs on human chromosomes. Exp Cell Res 92:148–158PubMedCrossRefGoogle Scholar
  33. 33.
    Manuelidis L, Wu JC (1978) Homology between human and simian repeated DNA. Nature 276:92–94PubMedCrossRefGoogle Scholar
  34. 34.
    Manuelidis L (1978) Complex and simple sequences in human repeated DNAs. Chromosoma 66:1–22PubMedCrossRefGoogle Scholar
  35. 35.
    Willard HF (1985) Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet 37:524–532PubMedGoogle Scholar
  36. 36.
    Waye JS, Willard HF (1989) Human α-satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA. Proc Natl Acad Sci U S A 86:6250–6254PubMedCrossRefGoogle Scholar
  37. 37.
    Luke S, Verma RS, Conte RA, Mathews T (1992) Molecular characterization of the secondary constriction region (qh) of human chromosome 9 with pericentric inversion. J Cell Sci 103:919–923PubMedGoogle Scholar
  38. 38.
    Ramesh KH, Verma RS (1996) Breakpoints in alpha, beta and satellite III DNA sequences of chromosome 9 result in a variety of pericentric inversions. J Med Genet 33:395–398PubMedCrossRefGoogle Scholar
  39. 39.
    Samonte RV, Conte RA, Ramesh KH, Verma RS (1996) Molecular cytogenetic characterization of breakpoints involving pericentric inversions of human chromosome 9. Hum Genet 98:576–580PubMedCrossRefGoogle Scholar
  40. 40.
    Vance GH, Curtis CA, Heerema NA, Schwartz S, Palmer CG (1997) An apparently acrocentric marker chromosome originating from 9p with a functional centromere without detectable alpha and beta satellite sequences. Am J Hum Genet 71:436–442CrossRefGoogle Scholar
  41. 41.
    Buckton KE, O’Riordan ML, Ratcliffe S, Slight J, Mitchell M, McBeath S, Keay AJ, Barr D, Short M (1980) A G-band study of chromosomes in liveborn infants. Ann Hum Genet 43:227–239PubMedCrossRefGoogle Scholar
  42. 42.
    Sutherland GR, Eyre H (1981) Two unusual G-band variants of the short arm of chromosome 9. Clin Genet 19:331–334PubMedCrossRefGoogle Scholar
  43. 43.
    Jalal SM, Kukolich MK, Garcia M, Day DW (1990) Euchromatic 9q+ heteromorphism in a family. Am J Hum Genet 37:155–156CrossRefGoogle Scholar
  44. 44.
    Knight LA, Soon GM, Tan M (1993) Extra G positive band on the long arm of chromosome 9. J Med Genet 30:613PubMedCrossRefGoogle Scholar
  45. 45.
    Roland B, Chernos JE, Cox D (1992) M. 9qh+ variant band in two families. Am J Med Genet 42:137–138PubMedCrossRefGoogle Scholar
  46. 46.
    Verma RS, Luke S, Brennan JP, Mathews T, Conte RA, Macera MJ (1993) Molecular topography of the secondary constriction region (qh) of the human chromosome 9 with an unusual euchromatic band. Am J Hum Genet 52:981–986PubMedGoogle Scholar
  47. 47.
    Wang JC, Miller WA (1994) Molecular cytogenetic characterization of two types of chromosome 9 variants. Cytogenet Cell Genet 67:190–192PubMedCrossRefGoogle Scholar
  48. 48.
    Macera MJ, Verma RS, Conte RA, Bialer MG, Klein VR (1995) Mechanisms of the origin of a G-positive band within the secondary constriction region of human chromosome 9. Cytogenet Cell Genet 69:235–239PubMedCrossRefGoogle Scholar
  49. 49.
    Silengo MC, Davi GF, Franeschini P (1982) Extra band in the 9qh+ chromosome in a normal father and in his child with multiple congenital anomalies. Hum Genet 60:294PubMedCrossRefGoogle Scholar
  50. 50.
    Luke S, Verma RS, PeBenito R, Macera M (1991) J. Inversion-duplication of bands q13–q21 of human chromosome 9. Am J Med Genet 40:57–60PubMedCrossRefGoogle Scholar
  51. 51.
    Docherty Z, Hulten MA (1985) Extra euchromatic band in the qh region of chromosome 9. J Med Genet 22:156–157PubMedCrossRefGoogle Scholar
  52. 52.
    Docherty Z, Hulten MA (1993) Rare variant of chromosome 9 (letter). Am J Med Genet 45:105–106PubMedCrossRefGoogle Scholar
  53. 53.
    Haddad BR, Lin AE, Wyandt H, Milunsky A (1996) Molecular cytogenetic characterization of the first familial case of partial 9p duplication (p22p24). J Med Genet 33:1045–1047PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Boston University School of Medicine Center for Human GeneticsBostonUSA
  2. 2.Acupath Laboratories, Inc.PlainviewUSA
  3. 3.Department of PediatricsTexas Tech University Health Science CenterLubbockUSA

Personalised recommendations