Parametric Interactions in Waveguides Realized on Periodically Poled Crystals

  • M. P. De Micheli
  • P. Baldi
  • D. B. Ostrowsky
Part of the NATO Science Series book series (ASHT, volume 61)

Abstract

In nonlinear optics, a waveguide configuration presents the advantage of a higher power confinement and a larger number of phase matching schemes. These advantages are counterbalanced by a certain number of extra requirements and a greater technological complexity. In this paper, these issues will be addressed by a quick review of different configurations which have been experimentally tested, and, as several studies are still underway, the state of the art will be presented.

Keywords

Pump Power Second Harmonic Generation Phase Match Lithium Niobate Optical Parametric Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Webjörn, J., Pruned, V., Russel, P., Barr, J.R.M. and Hanna, D.C. (1994) Blue light generation in bulk lithium niobate electrically poled via liquid electrod, Electron. Lett. 30, 894.CrossRefADSGoogle Scholar
  2. 2.
    Armstrong, J.A., Bloembergen, N., Ducuing, J. and Pershan, P.S. (1962) Interactions between light waves in nonlinear dielectric, Phys. Rev. 127, 1918–1939.CrossRefADSGoogle Scholar
  3. 3.
    Lim, E.J., Fejer, M.M. and Byer, R.L. (1989) Second harmonic generation of green light in periodically poled lithium niobate waveguide, Electron. Lett. 25, 174–174.CrossRefGoogle Scholar
  4. 4.
    Webjörn, J., Laurell, F. and Arvidsson, G. (1989) Blue light generated by frequency doubling of laser diode light in a lithium niobate waveguideBlue light generated by frequency doubling of laser diode light in a lithium niobate waveguide, IEEE Photonics Tech. Lett. 1, 316–318.Google Scholar
  5. 5.
    Myers, L.E. Eckardt, R.C., Fejer, M.M., Byer, R.L. and Pierce, J.W. (1995) CW-diode pumped optical parametric oscillator in bulk periodically poled LiNbO3, Electronics Letters 31, No. 21, 1869–1870.CrossRefGoogle Scholar
  6. 6.
    Bosenberg, W.R., Dobshoff, A., Alexander, J.I., Myers, L.E. and Byer, R.L. (1996) Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3, Optics Letters 21(10), 713–715.CrossRefADSGoogle Scholar
  7. 7.
    Jackel, J.L., Rice, R.E. and Veslka, J.J. (1982) Proton exchange for high index waveguides in LiNbO3, Appl. Phys. Lett. 41, 607.CrossRefADSGoogle Scholar
  8. 8.
    De Micheli, M., Botineau, J., Neveu, S., Sibillot, P., Ostrowsky, D.B. and Papuchon, M. (1983) Independent control of index and profiles in proton exchanged lithium niobate guidesIndependent control of index and profiles in proton exchanged lithium niobate guides, Opt. Lett. 8, 114–115.Google Scholar
  9. 9.
    Boyd, J.T. (1972) J.Q.E. 8, 788.CrossRefGoogle Scholar
  10. 10.
    Bloembergen, N. (1980) Conservation laws in nonlinear optics, J. Opt. Soc. Am. 70(12) 1429–1436.CrossRefADSGoogle Scholar
  11. 11.
    Stegeman, G.I. and Seaton, C.T. (1985) Nonlinear integrated optics, J. Appl. Phys. 58(12), R–57–R78.CrossRefGoogle Scholar
  12. 12.
    Hayata, K., Sugawara, T. and Koshiba, M. (1990) Modal analysis of second harmonic electromagnetic field generated by the Cerenkov effect in optical waveguides, J. Quant. Elect. 26(1), 123–134.CrossRefADSGoogle Scholar
  13. 13.
    Yariv, A. (1975), Quantum Electronics, Wiley, New York.Google Scholar
  14. 14.
    Ito, H. and Inaba, H. (1978) Efficient phase-matched second harmonic generation method in four layered optical waveguide structures, Opt. Lett. 2(6), 139–141.CrossRefADSGoogle Scholar
  15. 15.
    De Micheli, M., Botineau, J., Sibillot, P., Neveu, S., Ostrowsky, D.B. and Papuchon, M. (1983) Extension of second harmonic phase-matching range in lithium niobate guides, Opt. Lett. 8, 116–118.CrossRefADSGoogle Scholar
  16. 16.
    Schmidt, R.V. and Kaminov, I.P. (1974) Metal diffused optical waveguides in LiNbO3, Appl. Phys. Lett. 25(8), 458.CrossRefADSGoogle Scholar
  17. 17.
    Sohler, W. p.449 and Suche, H. p.480 (1984) New Directions in Guided Waves and Coherent Optics, D.B. Ostrowsky and E. Spitz (eds), Martinus Nijhoff Ed., The Hague.Google Scholar
  18. 18.
    Hermann, H. and Sohler, W. (1988) Difference-frequency generation of tunable, coherent mid-infrared radiation in Ti:LiNbO3 channel waveguides, J. Opt. Soc. Am. B. 5(2), 267–277.CrossRefADSGoogle Scholar
  19. 19.
    He, Q., De Micheli, M.P., Ostrowsky, D.B., Lallier, E., Pocholle, J.P., Papuchon, M., Armani, F., Delacourt, D., Grezes-Besset, C. and Pelletier, E. (1992) Self-frequency-doubled high δn proton exchanged Nd:LiNbO3 waveguides laser, Opt. Commun. 89(1), 54–58.CrossRefADSGoogle Scholar
  20. 20.
    Li, M.J., De Micheli, M.P. and Ostrowsky, D.B. (1990) Cerenkov configuration second harmonic generation in proton exchanged lithium niobate waveguides, J. Quant. Elect. 26(8), 1384–1393.CrossRefADSGoogle Scholar
  21. 21.
    Thyagarajan, K., Mahalakshmi, V. and Shenoy, M.R. (1993) Performance comparison of different configuration for second harmonic generation in planar waveguides, Int. Journal of Optoelectronics 8(4) 319–332.Google Scholar
  22. 22.
    Taniuchi, T. and Yamanoto, K. Mignaturized light sources of coherent blue radiation, Proc CLEO’ 87, 198.Google Scholar
  23. 23.
    He, Q., De Micheli, M.P., Ostrowsky, D.B., Lallier, E., Pocholle, J.P., Papuchon, M., Armani, F., Delacourt, D., Grezes-Besset, C. and Pelletier, E. Self-frequency-doubled high δη proton exchanged Nd:LiNb03 waveguide lasers, Compact Blue-Green Lasers’ 92, Santa Fé, New Mexico, USA.Google Scholar
  24. 24.
    Bierlin, J.D., Roelofs, M.G., Brown, J.B., Tohma, T. and Okamoto, S. KTiOPO4 blue laser using segmented waveguide structures, Compact Blue-Green Lasers’ 94, PDP 7.Google Scholar
  25. 25.
    Yamada, M., Nada, N., Saitoh, M. and Watanabe, K. (1993) First order quasi-phase matched LiNbO3 waveguides periodically poled applying an external field for efficient blue second harmonic generation, Appl. Phys. Lett. 60, 435–436.CrossRefADSGoogle Scholar
  26. 26.
    Fujimura, M. et al (1992) Electron Lett. 28, 1868–1869.CrossRefADSGoogle Scholar
  27. 27.
    Delacourt, D., Armani, F. and Papuchon, M. (1994) Second harmonic generation efficiency in periodically poled LiNbO3 waveguides, J. Quant. Elect. 30(4), 1090–1099.CrossRefADSGoogle Scholar
  28. 28.
    Machio, S., Nitanda, F., Ito, K. and Sato, M. (1992) Fabrication of periodically inverted domain structures in LiTa03 and LiNbO3 using proton exchange, Appl. Phys. Lett. 61, (26), 3077–3079.CrossRefADSGoogle Scholar
  29. 29.
    Gupta, M.C., Risk, W.P., Nutt, A.C.G. and Lau, S.D. (1993) Domain inversion in KTiOPO4 using electron beam scanning, Appl. Phys. Lett. 63(9), 1167–1169.CrossRefADSGoogle Scholar
  30. 30.
    Myers, L.E. (1995) PhD dissertation (G.L. n° 5396, Stanford University).Google Scholar
  31. 31.
    Chen, Q. and Risk, W.P. (1994) Periodic poling of KT1OPO4 using an applied electric field, Electron. Lett. 30(18), 1516–1517.CrossRefGoogle Scholar
  32. 32.
    Baldi, P., Nouh, S., De Micheli, M.P., Ostrowsky, D.B., Delacourt, D., Banti, X. and Papuchon, M. (1993) Efficient quasi phase-matched generation of parametric fluorescence in room temperature lithium niobate waveguides, Elect. Lett. 29(17), 1539.CrossRefGoogle Scholar
  33. 33.
    Baldi, P., Aschieri, P., Nouh, S., De Micheli, M. and Ostrowsky, D.B.; Delacourt, D. and Papuchon M. (1995) Modelling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides, J. Quant. Elect. 31(6), 997–1008.CrossRefADSGoogle Scholar
  34. 34.
    Mueller, C.T. and Garmire, E. (1984) Photorefractive effect in LiNbO3 directional couplers, App. Opt. 23, 4348–4351.CrossRefADSGoogle Scholar
  35. 35.
    Fejer, M., this book.Google Scholar
  36. 36.
    Baron, C, Cheng, H. and Gupta, M.C. (1996) Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals, Appl. Phys. Lett. 68(4), 22.CrossRefGoogle Scholar
  37. 37.
    Aboud, I., De Micheli, M. and Ostrowsky, D.B.; Smith, P.G.R. and Hanna, D. Etude de l’influence de la fabrication des guides d’ondes sur l’inversion de la polarisation dans le niobate de lithium, JNOG’97 — Saine Etienne, France.Google Scholar
  38. 38.
    Korkishko, Yu. N., Fedorov, V.A, De Mieheli, M., El Hadi, K., Baldi, P. and Leycuras, A (1996) Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate, Applied Optics, 35(36), 7056–7060.CrossRefADSGoogle Scholar
  39. 39.
    White, J.M. and Heidrich, P.F. (1976) Optical waveguide refractive index profiles determined from the measurement of mode indices: a simple analysis, Appl. Opt. 15, 151.CrossRefADSGoogle Scholar
  40. 40.
    Fedorov, V.A, Ganshin, V.A and Korkishko, Yu. N. (1993) New method of double-crystal X-ray diffractometric determination of the strained state in surface-layer structures, Phys. Status Solidi (a) 135, 493.CrossRefADSGoogle Scholar
  41. 41.
    El Hadi, K., Baldi, P., Nouh, S., De Mieheli, M.P., Leycuras, A, Fedorov, V.A. and Korkishko, Yu. N. (1995) Control of proton exchange for LiTaO3 waveguides and crystal structure of HxLil-xTaO3, Opt. Lett. 20(16), 1698–1700.CrossRefADSGoogle Scholar
  42. 42.
    Chen, S., De Micheli, M.P., Baldi, P., Ostrowsky, D.B., Leycuras, A, Tartarini, G. and Bassi, P. (1994) Hybrid modes in proton exchanged waveguides realized in LiNbO3, and their dependence on fabrication parameters, J. Light Tech. 12(5), 862–871.CrossRefGoogle Scholar
  43. 43.
    Chen, S. (1992) PhD dissertation, Nice.Google Scholar
  44. 44.
    Bortz, M.L., Eyres, L.A. and Fejer, M.M. Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNb03 waveguides, Appl. Phys. Lett. 62, 2012, 2014.Google Scholar
  45. 45.
    Cao, X., Srivastava, R., Ramaswamy, R.V. and Natour, J. (1993) Recovery of second order optical nonlinearity in annealed proton-exchanged LiNbO3, Photon. Technol Lett. 3, 25–27.CrossRefADSGoogle Scholar
  46. 46.
    Laurell, F., Roelofs, M.G. and Hsiung, H. (1992) Loss of optical nonlinearity in proton-exchanged LiNbOa waveguides, Appl. Phys. Lett. 60, 301–303.CrossRefADSGoogle Scholar
  47. 47.
    El Hadi, K., Sundheimer, M., Aschieri, P., Baldi, P., De Mieheli, M.P. and Ostrowsky, D.B.; Laurell, F. (1997) Quasi-phase-matched parametric interactions in proton exchanged lithium niobate waveguides, J. Opt. Soc. Am. B 14(11), 3197–3203.CrossRefADSGoogle Scholar
  48. 48.
    Ahlfeldt, H. (1994) Nonlinear optical properties of proton-exchanged waveguides inz-cut LiTaO3, J. Appl. Phys. 76(6), 3255–3260.CrossRefADSGoogle Scholar
  49. 49.
    Li, M.J., De Mieheli, M., Ostrowsky, D.B. and Papuchon, M. (1987) Fabrication et caracterisation des guides PE présentant une faible variation d’indice et une excellente qualité optique, J. Optics (Paris) 18(3) 139–144.CrossRefADSGoogle Scholar
  50. 50.
    Nassau, K., Levinstein, H.J. and Lolcano (1966) Ferroelectric lithium niobate 1: Growth, domain structure, dislocations and etching, J. Phys. Chem. Solids 27, 983–988.CrossRefADSGoogle Scholar
  51. 51.
    Fejer, M., this book.Google Scholar
  52. 52.
    Baldi, P., Nouh, S., De Mieheli, M., Ostrowsky, D.B., Delacourt, D., Banti, X. and Papuchon, M. (1993) Efficient quasi-phase-matched generation of parametric fluorescence in room temperature lithium niobate stripe waveguides, Electron. Lett. 29(17), 1539.CrossRefGoogle Scholar
  53. 53.
    Baldi, P., Aschieri, P., Nouh, S., De Mieheli, M., Ostrowsky, D.B., Delacourt, D. and Papuchon, M. (1995) Modelling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides, IEEE J. of Quant. Elec. 31(6) 997–1008.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • M. P. De Micheli
    • 1
  • P. Baldi
    • 1
  • D. B. Ostrowsky
    • 1
  1. 1.Laboratoire de Physique de la Matière CondenséeUMR 6622 CNRS Univervité de Nice Sophia-AntipolisNice Cedex 2France

Personalised recommendations