Tumor-Stroma Interactions: Focus on Fibroblasts

Chapter

Abstract

Despite improved diagnosis and therapies, including chemo- and radiotherapy, cancer still is among the leading causes of death in Europe and the world. Not only the tumor itself, but also the stromal tumor microenvironment has recently been pinpointed as a crucial player in tumor progression. Among the molecules of the tumor stroma, extracellular matrix components, integrins, matrix metalloproteinases and cytokines are considered potential targets in therapy approaches aimed at eradicating the tumor.

Keywords

Tumor Stroma Stroma Fibroblast Fibroblast Activation Protein Desmoplastic Reaction Regulate Tumor Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

CAFs

Carcinoma-Associated Fibroblasts

desmoplasia

Growth of Fibrous Connective Tissue

EMT

Epithelial Mesenchymal Transition

ECM

Extracellular Matrix

MET

Mesenchymal Epithelial Transition

MPPs

Matrix Metalloproteinases

SIBLING

Small Integrin-Binding Ligand N-Linked Glycoprotein

References

  1. Andrae, J., Gallini, R., & Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes & Development, 22, 1276–1312.CrossRefGoogle Scholar
  2. Apte, M. V., & Wilson, J. S. (2007). The desmoplastic reaction in pancreatic cancer: An increasingly recognised foe. Pancreatology, 7, 378–379.CrossRefPubMedGoogle Scholar
  3. Astrof, S., & Hynes, R. O. (2009). Fibronectins in vascular morphogenesis. Angiogenesis, 12, 165–175.CrossRefPubMedGoogle Scholar
  4. Barczyk, M., Carracedo, S., & Gullberg, D. (2010). Integrins. Cell and Tissue Research, 339, 269–280.CrossRefPubMedGoogle Scholar
  5. Bellahcene, A., Castronovo, V., Ogbureke, K. U., Fisher, L. W., & Fedarko, N. S. (2008). Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): Multifunctional proteins in cancer. Nature Reviews Cancer, 8, 212–226.CrossRefPubMedGoogle Scholar
  6. Boers, W., Aarrass, S., Linthorst, C., Pinzani, M., Elferink, R., & Bosma, P. (2006). Transcriptional profiling reveals novel markers of liver fibrogenesis: Gremlin and insulin-like growth factor-binding proteins. Journal of Biological Chemistry, 281, 16289–16295.CrossRefPubMedGoogle Scholar
  7. Brellier, F., Tucker, R. P., & Chiquet-Ehrismann, R. (2009). Tenascins and their implications in diseases and tissue mechanics. Scandinavian Journal of Medicine and Science in Sports, 19, 511–519.CrossRefPubMedGoogle Scholar
  8. Bystrom, B., Carracedo, S., Behndig, A., Gullberg, D., & Pedrosa-Domellof, F. (2009). Alpha11 integrin in the human cornea: Importance in development and disease. Investigative Ophthalmology & Visual Science, 50, 5044–5053.CrossRefGoogle Scholar
  9. Cabezon, T., Celis, J. E., Skibshoj, I., Klingelhofer, J., Grigorian, M., Gromov, P., et al. (2007). Expression of S100A4 by a variety of cell types present in the tumor microenvironment of human breast cancer. International Journal of Cancer, 121, 1433–1444.CrossRefGoogle Scholar
  10. Caporale, A., Cosenza, U. M., Vestri, A. R., Giuliani, A., Costi, U., Galati, G., et al. (2001). Has desmoplastic response extent protective action against tumor aggressiveness in gastric carcinoma? Journal of Experimental and Clinical Cancer Research, 20, 21–24.Google Scholar
  11. Carracedo, S., Lu, N., Popova, S. N., Jonsson, R., Eckes, B., & Gullberg, D. (2010) The fibroblast integrin {alpha}11{beta}1 is induced in a mechanosensitive manner involving activin A and regulates myofibroblast differentiation. Journal of Biological Chemistry, 285, 10434–10445.Google Scholar
  12. Chaudhry, A., Papanicolaou, V., Oberg, K., Heldin, C. H., & Funa, K. (1992). Expression of platelet-derived growth factor and its receptors in neuroendocrine tumors of the digestive system. Cancer Research, 52, 1006–1012.PubMedGoogle Scholar
  13. Cheresh, D. A., & Stupack, D. G. (2008). Regulation of angiogenesis: Apoptotic cues from the ECM. Oncogene, 27, 6285–6298.CrossRefPubMedGoogle Scholar
  14. Christian, S., Winkler, R., Helfrich, I., Boos, A. M., Besemfelder, E., Schadendorf, D., et al. (2008). Endosialin (tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. American Journal of Pathology, 172, 486–494.CrossRefPubMedGoogle Scholar
  15. Cui, R., Takahashi, F., Ohashi, R., Gu, T., Yoshioka, M., Nishio, K., et al. (2007). Abrogation of the interaction between osteopontin and alphavbeta3 integrin reduces tumor growth of human lung cancer cells in mice. Lung Cancer, 57, 302–310.CrossRefPubMedGoogle Scholar
  16. De Wever, O., Demetter, P., Mareel, M., & Bracke, M. (2008). Stromal myofibroblasts are drivers of invasive cancer growth. International Journal of Cancer, 123, 2229–2238.CrossRefGoogle Scholar
  17. Desgrosellier, J. S., & Cheresh, D. A. Integrins in cancer: Biological implications and therapeutic opportunities. Nature Reviews Cancer, 10, 9–22.Google Scholar
  18. Dong, J., Grunstein, J., Tejada, M., Peale, F., Frantz, G., Liang, W. C., et al. (2004). VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. The EMBO Journal, 23, 2800–2810.CrossRefPubMedGoogle Scholar
  19. Dvorak, H. F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315, 1650–1659.CrossRefPubMedGoogle Scholar
  20. Faulkner, J. L., Szcykalski, L. M., Springer, F., & Barnes, J. L. (2005). Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis. The American Journal of Pathology, 167, 1193–1205.CrossRefPubMedGoogle Scholar
  21. Franco, O. E., Shaw, A. K., Strand, D. W., & Hayward, S. W. (2010). Cancer associated fibroblasts in cancer pathogenesis. Seminars in Cell and Developmental Biology, 21, 33–39.Google Scholar
  22. Gaggioli, C., Hooper, S., Hidalgo-Carcedo, C., Grosse, R., Marshall, J. F., Harrington, K., et al. (2007). Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biology, 9, 1392–1400.CrossRefPubMedGoogle Scholar
  23. Giatromanolaki, A., Sivridis, E., & Koukourakis, M. I. (2007). The pathology of tumor stromatogenesis. Cancer Biology & Therapy, 6, 639–645.Google Scholar
  24. Gullberg, D. (2008). How to keep that stemmy-ness: Stem cells in the spotlight. Matrix Biology, 27, 161–162.CrossRefPubMedGoogle Scholar
  25. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.CrossRefPubMedGoogle Scholar
  26. Haviv, I., Polyak, K., Qiu, W., Hu, M., & Campbell, I. (2009). Origin of carcinoma associated fibroblasts. Cell Cycle, 8, 589–595.CrossRefPubMedGoogle Scholar
  27. Heldin, C. H., Rubin, K., Pietras, K., & Ostman, A. (2004). High interstitial fluid pressure – An obstacle in cancer therapy. Nature Reviews Cancer, 4, 806–813.CrossRefPubMedGoogle Scholar
  28. Hinz, B. (2007). Formation and function of the myofibroblast during tissue repair. The Journal of Investigative Dermatology, 127, 526–537.CrossRefPubMedGoogle Scholar
  29. Hinz, B. (2009). Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: Implications for the pathogenesis and treatment of fibrosis. Current Rheumatology Reports, 11, 120–126.CrossRefPubMedGoogle Scholar
  30. Hinz, B., Phan, S. H., Thannickal, V. J., Galli, A., Bochaton-Piallat, M. L., & Gabbiani, G. (2007). The myofibroblast: One function, multiple origins. The American Journal of Pathology, 170, 1807–1816.CrossRefPubMedGoogle Scholar
  31. Hooper, S., Gaggioli, C., & Sahai, E. (2010). A chemical biology screen reveals a role for Rab21-mediated control of actomyosin contractility in fibroblast-driven cancer invasion. British Journal of Cancer, 102, 392–402.CrossRefPubMedGoogle Scholar
  32. Hornbeck, P. V., Garrels, J. I., Capetanaki, Y., & Heimer, S. (1993). Vimentin expression is differentially regulated by IL-2 and IL-4 in murine T cells. Journal of Immunology, 151, 4013–4021.Google Scholar
  33. Hynes, R. O. (2007). Cell-matrix adhesion in vascular development. Journal of Thrombosis and Haemostasis, 5(Suppl 1), 32–40.CrossRefPubMedGoogle Scholar
  34. Hynes, R. O. (2009). The extracellular matrix: Not just pretty fibrils. Science., 326, 1216–1219.CrossRefPubMedGoogle Scholar
  35. Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6, 392–401.CrossRefPubMedGoogle Scholar
  36. Kaplan, R. N., Psaila, B., & Lyden, D. (2007). Niche-to-niche migration of bone-marrow-derived cells. Trends in Molecular Medicine, 13, 72–81.CrossRefPubMedGoogle Scholar
  37. Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449, 557–563.CrossRefPubMedGoogle Scholar
  38. Kisseleva, T., & Brenner, D. A. (2008). Mechanisms of fibrogenesis. Experimental Biology and Medicine (Maywood), 233, 109–122.CrossRefGoogle Scholar
  39. Levental, K. R., Yu, H., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 139, 891–906.CrossRefPubMedGoogle Scholar
  40. Ma, X., Dahiya, S., Richardson, E., Erlander, M., & Sgroi, D. (2009). Gene expression profiling of tumor microenvironment during breast cancer progression. Breast Cancer Research, 11, R7.CrossRefPubMedGoogle Scholar
  41. Margadant, C., & Sonnenberg, A. (2010). Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Reports, 11, 97–105.Google Scholar
  42. Matsumoto, E., Yoshida, T., Kawarada, Y., & Sakakura, T. (1999). Expression of fibronectin isoforms in human breast tissue: Production of extra domain A+/extra domain B+ by cancer cells and extra domain A+ by stromal cells. Japanese Journal of Cancer Research, 90, 320–325.PubMedGoogle Scholar
  43. Micheli, A., Mugno, E., Krogh, V., Quinn, M. J., Coleman, M., Hakulinen, T., et al. (2002). Cancer prevalence in European registry areas. The Annals of Oncology, 13, 840–865.CrossRefGoogle Scholar
  44. Monahan, T. S., Andersen, N. D., Panossian, H., Kalish, J. A., Daniel, S., Shrikhande, G. V., et al. (2007). A novel function for cadherin 11/osteoblast-cadherin in vascular smooth muscle cells: modulation of cell migration and proliferation. Journal of  Vascular Surgery, 45, 581–589.CrossRefPubMedGoogle Scholar
  45. Muller, P. A., Caswell, P. T., Doyle, B., Iwanicki, M. P., Tan, E. H., Karim, S., et al. (2009). Mutant p53 drives invasion by promoting integrin recycling. Cell, 139, 1327–1341.CrossRefPubMedGoogle Scholar
  46. Nam, J. M., Chung, Y., Hsu, H. C., & Park, C. C. (2009). beta1 integrin targeting to enhance radiation therapy. International Journal of Radiation Biology, 85, 923–928.CrossRefPubMedGoogle Scholar
  47. Ng, M. R., & Brugge, J. S. (2009). A stiff blow from the stroma: Collagen crosslinking drives tumor progression. Cancer Cell, 16, 455–457.CrossRefPubMedGoogle Scholar
  48. Nieminen, M., Henttinen, T., Merinen, M., Marttila-Ichihara, F., Eriksson, J. E., & Jalkanen, S. (2006). Vimentin function in lymphocyte adhesion and transcellular migration. Nature Cell Biology, 8, 156–162.CrossRefPubMedGoogle Scholar
  49. Pellinen, T., Arjonen, A., Vuoriluoto, K., Kallio, K., Fransen, J. A., & Ivaska, J. (2006). Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. The Journal of Cell Biology, 173, 767–780.CrossRefPubMedGoogle Scholar
  50. Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nature Reviews Cancer, 9, 265–273.CrossRefPubMedGoogle Scholar
  51. Popova, S. N., Rodriguez-Sanchez, B., Liden, A., Betsholtz, C., Van Den Bos, T., & Gullberg, D. (2004). The mesenchymal alpha11beta1 integrin attenuates PDGF-BB-stimulated chemotaxis of embryonic fibroblasts on collagens. Developmental Biology, 270, 427–442.CrossRefPubMedGoogle Scholar
  52. Popova, S. N., Barczyk, M., Tiger, C. F., Beertsen, W., Zigrino, P., Aszodi, A., et al. (2007). Alpha11 beta1 integrin-dependent regulation of periodontal ligament function in the erupting mouse incisor. Molecular and Cellular Biology, 27, 4306–4316.CrossRefPubMedGoogle Scholar
  53. Pozzi, A., Moberg, P. E., Miles, L. A., Wagner, S., Soloway, P., & Gardner, H. A. (2000). Elevated matrix metalloprotease and angiostatin levels in integrin α1 knockout mice cause reduced tumor vascularization. Proceedings of the National Academy of Sciences of the United States of America, 97, 2202–2207.CrossRefPubMedGoogle Scholar
  54. Prud’homme, G. J. (2007). Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Laboratory Investigation, 87, 1077–1091.CrossRefPubMedGoogle Scholar
  55. Pujuguet, P., Hammann, A., Moutet, M., Samuel, J. L., Martin, F., & Martin, M. (1996). Expression of fibronectin ED-A+ and ED-B+ isoforms by human and experimental colorectal cancer. Contribution of cancer cells and tumor-associated myofibroblasts. American Journal of Pathology, 148, 579–592.PubMedGoogle Scholar
  56. Pure, E. (2009). The road to integrative cancer therapies: Emergence of a tumor-associated fibroblast protease as a potential therapeutic target in cancer. Expert Opinion Therapeutic Targets, 13, 967–973.CrossRefGoogle Scholar
  57. Radisky, D., Muschler, J., & Bissell, M. J. (2002). Order and disorder: The role of extracellular matrix in epithelial cancer. Cancer Investigation, 20, 139–153.CrossRefPubMedGoogle Scholar
  58. Rege, T. A., & Hagood, J. S. (2006). Thy-1, a versatile modulator of signaling affecting cellular adhesion, proliferation, survival, and cytokine/growth factor responses. Biochimica et Biophysica Acta, 1763, 991–999.CrossRefPubMedGoogle Scholar
  59. Rinn, J. L., Bondre, C., Gladstone, H. B., Brown, P. O., & Chang, H. Y. (2006). Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Geneicst, 2, e119.CrossRefGoogle Scholar
  60. Sabeh, F., Li, X., Saunders, T., Rowe, R., & Weiss, S. (2009a). Secreted versus membrane-anchored collagenases: Relative roles in fibroblast-dependent collagenolysis and invasion. Journal of Biological Chemistry, 284, 23001–23011.Google Scholar
  61. Sabeh, F., Shimizu-Hirota, R., & Weiss, S. (2009b). Protease-dependent versus -independent cancer cell invasion programs: Three-dimensional amoeboid movement revisited. The Journal of Cell Biology, 185, 11–19.Google Scholar
  62. Sadlonova, A., Bowe, D., Novak, Z., Mukherjee, S., Duncan, V., Page, G., et al. (2009). Identification of molecular distinctions between normal breast-associated fibroblasts and breast cancer-associated fibroblasts. Cancer Microenvironment, 2, 9–21.Google Scholar
  63. Selivanova, G., & Ivaska, J. (2009). Integrins and mutant p53 on the road to metastasis. Cell, 139, 1220–1222.CrossRefPubMedGoogle Scholar
  64. Senger, D. R., Claffey, K. P., Benes, J. E., Perruzzi, C. A., Sergiou, A. P., & Detmar, M. (1997). Angiogenesis promoted by vascular endothelial growth factor: Regulation through α1β1 and α2β1 integrins. Proceedings of the National Academy of Sciences of the United States of America, 94, 13612–13617.CrossRefPubMedGoogle Scholar
  65. Shaw, A., Gipp, J., & Bushman, W. (2009). The Sonic Hedgehog pathway stimulates prostate tumor growth by paracrine signaling and recapitulates embryonic gene expression in tumor myofibroblasts. Oncogene, 28, 4480–4490.CrossRefPubMedGoogle Scholar
  66. Sheehan, K. M., Gulmann, C., Eichler, G. S., Weinstein, J. N., Barrett, H. L., Kay, E. W., et al. (2008). Signal pathway profiling of epithelial and stromal compartments of colonic carcinoma reveals epithelial-mesenchymal transition. Oncogene, 27, 323–331.CrossRefPubMedGoogle Scholar
  67. Sorrell, J. M., Baber, M. A., & Caplan, A. I. (2007). Clonal characterization of fibroblasts in the superficial layer of the adult human dermis. Cell and Tissue Research, 327, 499–510.CrossRefPubMedGoogle Scholar
  68. Suhr, F., Brixius, K., & Bloch, W. (2009). Angiogenic and vascular modulation by extracellular matrix cleavage products. Current Pharmaceutical Design, 15, 389–410.CrossRefPubMedGoogle Scholar
  69. Takemura, S., Yashiro, M., Sunami, T., Tendo, M., & Hirakawa, K. (2004). Novel models for human scirrhous gastric carcinoma in vivo. Cancer Science, 95, 893–900.CrossRefPubMedGoogle Scholar
  70. Thompson, E. W., & Williams, E. D. (2008). EMT and MET in carcinoma—clinical observations, regulatory pathways and new models. Clinical and Experimental Metastasis, 25, 591–592.CrossRefPubMedGoogle Scholar
  71. Tsuchiya, B., Sato, Y., Kameya, T., Okayasu, I., & Mukai, K. (2006). Differential expression of N-cadherin and E-cadherin in normal human tissues. Archives of Histology and Cytology, 69, 135–145.CrossRefPubMedGoogle Scholar
  72. Tsujino, T., Seshimo, I., Yamamoto, H., Ngan, C. Y., Ezumi, K., Takemasa, I., et al. (2007). Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clinical Cancer Research, 13, 2082–2090.CrossRefPubMedGoogle Scholar
  73. Van Muijen, G. N., Ruiter, D. J., & Warnaar, S. O. (1987). Coexpression of intermediate filament polypeptides in human fetal and adult tissues. Laboratory Investigation, 57, 359–369.PubMedGoogle Scholar
  74. Verbeek, M. M., Otte-Holler, I., Wesseling, P., Ruiter, D. J., & de Waal, R. M. (1994). Induction of alpha-smooth muscle actin expression in cultured human brain pericytes by transforming growth factor-beta 1. American Journal of Pathology, 144, 372–382.PubMedGoogle Scholar
  75. Wipff, P. J., & Hinz, B. (2009). Myofibroblasts work best under stress. Journal of Bodywork and Movement Therapies, 13, 121–127.CrossRefPubMedGoogle Scholar
  76. Zhu, C. Q., Popova, S. N., Brown, E. R., Barsyte-Lovejoy, D., Navab, R., Shih, W., et al. (2007). Integrin alpha 11 regulates IGF2 expression in fibroblasts to enhance tumorigenicity of human non-small-cell lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 11754–11759.CrossRefPubMedGoogle Scholar
  77. Zigrino, P., Kuhn, I., Bauerle, T., Zamek, J., Fox, J. W., Neumann, S., et al. (2009). Stromal expression of MMP-13 is required for melanoma invasion and metastasis. The Journal of Investigative Dermatology, 129, 2686–2693.CrossRefPubMedGoogle Scholar
  78. Zutter, M. M. (2007). Integrin-mediated adhesion: Tipping the balance between chemosensitivity and chemoresistance. Advances in Experimental Medicine and Biology, 608, 87–100.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of BiomedicineUniversity of BergenBergenNorway

Personalised recommendations