Advertisement

Ultrastructural Approaches to the Microfossil Record: Assessing Biological Affinities by Use of Transmission Electron Microscopy

  • Sebastian Willman
  • Phoebe A. Cohen
Chapter
Part of the Topics in Geobiology book series (TGBI, volume 36)

Abstract

One of the major technological advances in biological research was the invention and development of the transmission electron microscope, which enables high resolution and high magnification studies of cross-sections of specimens. As such, it has proved to be a useful tool to describe ultrastructural features of taxonomic and phylogenetic importance in modern organisms. Here we discuss how to extend the use of transmission electron microscopy (TEM) to the fossil record, with emphasis on acritarchs (organic-walled microfossils of unknown affinity). Microfossils are traditionally studied by use of transmitted light microscopy, a method that reveals details of external morphology only. TEM however, gives an additional level of detail and reveals structures that can greatly aid in interpretation of taxonomic affinity, and thus can reveal further detail on the origination and diversification of myriad eukaryotic groups in the fossil record. In this chapter we describe the preparation procedure, show advantages and shortcomings of the technique, and discuss how to interpret the results from a geobiological perspective.

Keywords

TEM Ultrastructure Preparation Acritarch Biological affinities 

Notes

Acknowledgments

Gary Wife, Anette Axén and Stefan Gunnarsson at the Microscopy and Imaging unit at EBC, Uppsala University, are thanked for their expertise regarding preparing and sectioning the samples and microscope work. Margaret Coughling at the Harvard Medical School provided help and inspiration to PAC in developing a new preparation method and provided help and advice with microtoming.

References

  1. Allard B, Templier J (2000) Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry 54:369–380CrossRefGoogle Scholar
  2. Arouri K, Greenwood PF, Walter MR (1999) A possible chlorophycean affinity of some Neoproterozoic acritarchs. Org Geochem 30:1323–1337CrossRefGoogle Scholar
  3. Arouri K, Greenwood PF, Walter MR (2000) Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Org Geochem 31:75–89CrossRefGoogle Scholar
  4. Barghoorn ES, Tyler SA (1965) Microorganisms from the Gunflint Chert. Science 147:563–577CrossRefGoogle Scholar
  5. Bozzola JJ, Russel LD (1999) Electron microscopy: principles and techniques for biologists, 2nd edn. Jones & Bartlett, Sudbury, 670 ppGoogle Scholar
  6. Brasier MD, Green OR, Jephcoat AP, Kleppe AT, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81CrossRefGoogle Scholar
  7. Buckland-Nicks J, Hodgson A (2000) Fertilization in Callochiton castaneus (Mollusca). Biol Bull 199:59–67CrossRefGoogle Scholar
  8. Cáceres CE (1997) Dormancy in invertebrates. Invert Biol 116:371–383CrossRefGoogle Scholar
  9. Cohen PA, Knoll AH, Kodner RB (2009) Large spinose microfossils in Ediacaran rocks as resting stages of early animals. PNAS 106:6519–6524CrossRefGoogle Scholar
  10. Couch K, Downes M, Burns C (2001) Morphological differences between subitaneous and diapause eggs of Boeckella triarticulata (Copepoda: Calanoida). Freshw Biol 46:925–933CrossRefGoogle Scholar
  11. Damiani MC, Leonardi PI, Pieroni OI, Caceres EJ (2006) Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia 45:616–623CrossRefGoogle Scholar
  12. De Gregorio BT, Sharp TG, Flynn GJ, Wirick S, Hervig RL (2009) Biogenic origin for Earth’s oldest putative microfossils. Geology 37:631–634CrossRefGoogle Scholar
  13. Egerton RF (2005) Physical principles of electron microscopy. An introduction to TEM, SEM, and AEM. Springer, New York, 202 ppCrossRefGoogle Scholar
  14. Evitt WR (1963) A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs. Proc Natl Acad Sci USA 49(158–164):298–302CrossRefGoogle Scholar
  15. Grauvogel-Stamm L, Guignard G, Wellman CH (eds) (2009) Spore/pollen fine structure in living and fossil plants. Rev Palaeobot Palynol 156:1–262Google Scholar
  16. Grey K, Willman S (2009) Taphonomy of Ediacaran (late Neoproterozoic) acritarchs: significance for taxonomy and biostratigraphy. Palaios 24:239–256CrossRefGoogle Scholar
  17. Hagen C, Siegmund S, Braune W (2002) Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur J Phycol 37:217–226CrossRefGoogle Scholar
  18. Hill R, Shepard W (1997) Observations on the identification of California anostracan cysts. Hydrobiologia 359:113–123CrossRefGoogle Scholar
  19. Inouye I, Hori T, Moestrup Ø (2003) Ultrastructural studies on Cymbomonas tetramitiformis (Prasinophyceae). I. General structure, scale microstructure, and ontogeny. Can J Bot 81:657–671CrossRefGoogle Scholar
  20. Javaux EJ, Marshal CP (2006) A new approach in deciphering early protist palaeobiology and evolution: combined microscopy and microchemistry of single Proterozoic acritarchs. Rev Palaeobot Palynol 139:1–15CrossRefGoogle Scholar
  21. Javaux EJ, Knoll AH, Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69CrossRefGoogle Scholar
  22. Javaux EJ, Knoll AH, Walter MR (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 33:75–94CrossRefGoogle Scholar
  23. Javaux EJ, Knoll AH, Walter MR (2004) TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2:121–132CrossRefGoogle Scholar
  24. Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938CrossRefGoogle Scholar
  25. Jones TP, Rowe NP (eds) (1999) Fossil plants and spores – modern techniques. Geological Society Publishing House, BathGoogle Scholar
  26. Jux U (1968) Über den Feinbau der Wandung bei Tasmanites Newton. Palaeontogr Abt B 124:112–124Google Scholar
  27. Jux U (1969a) Über den Feinbau der Zystenwandung von Pachysphaera marshalliae Parke, 1966. Palaeontogr Abt B 125:104–111Google Scholar
  28. Jux U (1969b) Über den Feinbau der Zystenwandung von Halosphaera Schmitz, 1878. Palaeontogr Abt B 128:48–55Google Scholar
  29. Jux U (1971) Über den Feinbau der Wandungen einiger paläozischer Baltisphaeidiacean. Palaeontogr Abt B 136:115–128Google Scholar
  30. Jux U (1977) Über die wandstrukturen sphaeromorpher acritarchen: Tasmanites Newton, Tapajonites Sommer & Van Boekel, Chuaria Walcott. Palaeontogr Abt B 160:1–16Google Scholar
  31. Kempe A, Wirth R, Altermann W, Stark RW, Schopf JW, Heckl WM (2005) Focussed ion beam preparation and in situ nanoscopic study of Precambrian acritarchs. Precambrian Res 140:35–54CrossRefGoogle Scholar
  32. Kennaway GE, Eaton GL, Feist-Burkhardt S (2008) A detailed protocol for the preparation and orientation of single fossil dinoflagellate cysts for transmission electron microscopy. Palynology 32:1–15CrossRefGoogle Scholar
  33. Kjellström G (1968) Remarks on the chemistry and ultrastructure of the cell wall of some Palaeozoic leiospheres. Geol Fören Stockh Förh 90:118–221CrossRefGoogle Scholar
  34. Knoll M (1935) Aufladepotentiel und Sekundäremission elektronenbestrahlter Körper. Z techische Phys 16:467–475Google Scholar
  35. Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc B 631:1023–1038CrossRefGoogle Scholar
  36. Marshall CP, Javaux EJ, Knoll AH, Walter MR (2005) Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to Palaeobiology. Precambrian Res 138:208–224CrossRefGoogle Scholar
  37. Marshall CP, Carter EA, Leuko S, Javaux EJ (2006) Vibrational spectroscopy of extant and fossil microbes: relevance for the astrobiological exploration of Mars. Vib Spectrosc 41:182–189CrossRefGoogle Scholar
  38. Martin F, Kjellström G (1973) Ultrastructural study of some Ordovician acritarchs from Gotland, Sweden. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1:44–54Google Scholar
  39. McMullan D (1995) Scanning electron microscopy 1928–1965. Scanning 17:175–185CrossRefGoogle Scholar
  40. Moczydłowska M, Willman S (2009) Ultrastructure of cell walls in ancient microfossils as a proxy to their biological affinities. Precambrian Res 173:27–38CrossRefGoogle Scholar
  41. Moczydłowska M, Schopf JW, Willman S (2010) Micro- and nano-scale ultrastructure of cell walls in Cryogenian microfossils: revealing their biological affinity. Lethaia 43:130–136Google Scholar
  42. Moreau JW, Sharp TG (2004) A transmission electron microscopy study of silica and kerogen biosignatures in 1.9 Ga Gunflint microfossils. Astrobiology 4:196–210CrossRefGoogle Scholar
  43. Onoue Y, Toda T, Ban S (2004) Morphological features and hatching patterns of eggs in Acartia steueri (Crustacea, Copepoda) from Sagami Bay, Japan. Hydrobiologia 511:17–24CrossRefGoogle Scholar
  44. Peat CJ (1981) Comparative light microscopy, scanning electron microscopy and transmission electron microscopy of selected organic walled microfossils. J Microsc 122:287–294CrossRefGoogle Scholar
  45. Peng Y, Bao H, Yuan X (2009) New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Res 168:223–232CrossRefGoogle Scholar
  46. Reimer L, Kohl H (2008) Transmission electron microscopy. Physics of image formation, 5th edn. Springer, New York, 590 ppGoogle Scholar
  47. Schiffbauer JD, Xiao S (2009) Novel application of focused ion beam electron microscopy (FIB-EM) in preparation and analysis of microfossil ultrastructures: a new view of complexity in early eukaryotic organisms. Palaios 24:616–626CrossRefGoogle Scholar
  48. Schopf JW (1993) Microfossils of the early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646CrossRefGoogle Scholar
  49. Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76CrossRefGoogle Scholar
  50. Talyzina NM, Moczydłowska M (2000) Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lükati Formation, Estonia. Rev Palaeobot Palynol 112:1–21CrossRefGoogle Scholar
  51. van Waveren IM, Marcus NH (1993) Morphology of recent copepod egg envelopes from Turkey Point, Gulf of Mexico, and their implications for acritarch affinity. Spec Pap Palaeontol 48:111–124Google Scholar
  52. Wall D (1962) Evidence from recent plankton regarding the biological affinities of Tasmanites Newton 1875 and Leiosphaeridia Eisenack 1958. Geol Mag 99:353–362CrossRefGoogle Scholar
  53. Wellman CH, Grauvogel Stamm L, Guignard G (2009) Studies of spore/pollen wall ultrastructure in fossil and living plants: a review of the subject are and the contribution of Bernard Lugardon. Rev Palaeobot Palynol 156:2–6CrossRefGoogle Scholar
  54. Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for materials science, 2nd edn. Springer, New York, 760 ppCrossRefGoogle Scholar
  55. Willman S (2009) Morphology and wall ultrastructure of leiosphaeric and acanthomorphic acritarchs from the Ediacaran of Australia. Geobiology 7:8–20CrossRefGoogle Scholar
  56. Willman S, Moczydłowska M (2007) Wall ultrastructure of an Ediacaran acritarch from the Officer Basin, Australia. Lethaia 40:111–123CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Department of Earth Sciences, PalaeobiologyUppsala UniversityUppsalaSweden
  2. 2.Department of Earth and Planetary SciencesHarvard UniversityCambridgeUSA
  3. 3.Massachusetts Institute of TechnologyNASA Astrobiology InstituteCambridgeUSA

Personalised recommendations