The pelagic food web

  • Agneta Andersson
  • Timo Tamminen
  • Sirpa Lehtinen
  • Klaus Jürgens
  • Matthias Labrenz
  • Markku Viitasalo


  1. 1.

    Environmental drivers and food web structure in the pelagic zone vary from south to north in the Baltic Sea.

  2. 2.

    While nitrogen is generally the limiting nutrient for primary production in the Baltic Sea, phosphorus is the limiting nutrient in the Bothnian Bay.

  3. 3.

    In the Gulf of Bothnia the food web is to a large extent driven by terrestrial allochthonous material, while autochthonous production dominates in the other parts of the Baltic Sea.

  4. 4.

    Changes in bacterioplankton, protist and zooplankton community composition from south to north are mainly driven by salinity.

  5. 5.

    Bacteria are crucial constituents of the pelagic food web (microbial loop) and in oxygen-poor and anoxic bottom waters where they mediate element transformations.

  6. 6.

    Diatoms and dinoflagellates are the major primary producers in the pelagic zone. Summer blooms of diazotrophic (nitrogen-fixing) filamentous cyanobacteria are typical of the Baltic Sea, especially in the Baltic Sea proper and the Gulf of Finland.

  7. 7.

    The mesozooplankton (mainly copepods and cladocerans) channel energy from primary producers and the microbial food web to fish and finally to the top predators in the pelagic system (waterbirds and mammals).

  8. 8.

    Herring and sprat populations are affected by the foraging intensity of their main predator (cod), and therefore the environmental conditions that affect cod may also influence mesozooplankton due to food web effects “cascading down the food web”.

  9. 9.

    Anthropogenic pressures, such as overexploitation of fish stocks, eutrophication, climate change, introduction of non-indigenous species and contamination of top predators by hazardous substances, cause changes in the pelagic food web that may have consequences for the balance and stability of the whole ecosystem.



Baltic Sea gradient Food-web interactions Human impacts Microbial loop Pelagic communities Productivity Trophic cascades 


  1. Aleksandrov SV, Zhigalova NN, Zezera AS (2009) Long-term dynamics of zooplankton in the southeastern Baltic Sea. Russian Journal of Marine Biology 35:296–304CrossRefGoogle Scholar
  2. Algesten G, Brydsten L, Jonsson A, Kortelainen P, Lövgren S et al (2006) Organic carbon budget for the Gulf of Bothnia. Journal of Marine Systems 63:155–161CrossRefGoogle Scholar
  3. Anderson R, Winter C, Jürgens K (2012) Protist grazing and viral lysis as prokaryotic mortality factors at Baltic Sea oxic-anoxic interfaces. Marine Ecology Progress Series 467:1–14CrossRefGoogle Scholar
  4. Andersson A, Falk S, Samuelsson G, Hagström A (1989) Nutritional characteristics of a mixotrophic nanoflagellate, Ochromonas sp. Microbial Ecology 17:251–262CrossRefGoogle Scholar
  5. Andersson A, Hajdu S, Haecky P, Kuparinen J, Wikner J (1996) Succession and growth of phytoplankton in the Gulf of Bothnia (Baltic Sea). Marine Biology 126:791–801CrossRefGoogle Scholar
  6. Andersson A, Samuelsson K, Haecky P, Albertsson J (2006) Changes in the pelagic microbial food web due to artificial eutrophication. Aquatic Ecology 40:99–313CrossRefGoogle Scholar
  7. Andersson A, Jurgensone I, Rowe OF, Simonelli P, Bignert A et al (2013) Can humic water discharge counteract eutrophication in coastal waters? PLoS ONE 8(4):e61293CrossRefGoogle Scholar
  8. Andersson A, Meier HEM, Ripszam M, Rowe O, Wikner J et al (2015) Projected future climate change and Baltic Sea ecosystem management. Ambio 44(Supplement):S345–S356CrossRefGoogle Scholar
  9. Aneer G (1980) Estimates of feeding pressure on pelagic and benthic organisms by Baltic herring (Clupea harengus v. membras L.). Ophelia 1:65–275Google Scholar
  10. Atamna-Ismaeel N, Sabeh G, Sharon I, Witzel KP, Labrenz M et al (2008) Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. The ISME Journal 2:656–662CrossRefGoogle Scholar
  11. Autio R (1998) Response of seasonally cold-water bacterioplankton to temperature and substrate treatments. Estuarine, Coastal and Shelf Science 46:465–474CrossRefGoogle Scholar
  12. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10:257–263CrossRefGoogle Scholar
  13. Backer J, Biemans C, van Doorn J, Krab K, Reinders W et al (2014) Van Leeuwenhoek: groots in het kleine. Veen Media, Amsterdam, 160 pp [in Dutch]Google Scholar
  14. Bartolino V, Margonski P, Lindegren M, Linderholm H, Cardinale et al (2014) Forecasting fish stock dynamics under climate change: Baltic herring (Clupea harengus) as a case study. Fisheries Oceanography 23:258–269CrossRefGoogle Scholar
  15. Barz K, Hirche HJ (2005) Seasonal development of scyphozoan medusae and the predatory impact of Aurelia aurita on the zooplankton community in the Bornholm basin (central Baltic Sea). Marine Biology 147:465–476CrossRefGoogle Scholar
  16. Behrends G, Schneider G (1995) Impact of Aurelia aurita medusae (Cnidaria, Scyphozoa) on the standing stock and community composition of mesozooplankton in the Kiel Bight (western Baltic Sea). Marine Ecology Progress Series 127:39–45CrossRefGoogle Scholar
  17. Berg C, Vandieken V, Thamdrup B, Jürgens K (2015) Significance of archaeal nitrification in hypoxic waters of the Baltic Sea. The ISME Journal 9:1319–1332CrossRefGoogle Scholar
  18. Berglund J, Muren U, Båmstedt U, Andersson A (2007) Efficiency of a phytoplankton-based and a bacteria-based food web in a pelagic marine system. Limnology and Oceanography 52:121–131CrossRefGoogle Scholar
  19. Bölter M, Meyer-Reil LA, Dawson R, Liebezeit G, Wolter K, Szwerinski H (1981) Structure analysis of shallow water ecosystems: interaction of microbiological, chemical and physical characteristics measured in the overlying waters of sandy beach sediments. Estuarine, Coastal and Shelf Science 13:579–589CrossRefGoogle Scholar
  20. Bralewska JM, Witek Z (1995) Heterotrophic dinoflagellates in the ecosystem of the Gulf of Gdańsk. Marine Ecology Progress Series 117:241–248CrossRefGoogle Scholar
  21. Brander KM (2007) Global fish production and climate change. Proceedings of the National Academy of Sciences of the USA 104:19709–19714CrossRefGoogle Scholar
  22. Brettar I, Rheinheimer G (1991) Denitrification in the central Baltic: evidence for H2S-oxidation as motor of denitrification at the oxic-anoxic interface. Marine Ecology Progress Series 77:157–169CrossRefGoogle Scholar
  23. Burns TP (1989) Lindeman’s contradiction and the trophic structure of ecosystems. Ecology 70:1355–1362CrossRefGoogle Scholar
  24. Burris JE (1980) Vertical migration of zooplankton in the Gulf of Finland. American Midland Naturalist 103:316–322CrossRefGoogle Scholar
  25. Casini M, Cardinale M, Hjelm J (2006) Inter-annual variation in herring, Clupea harengus, and sprat, Sprattus sprattus, condition in the central Baltic Sea: what gives the tune? Oikos 112:638–650CrossRefGoogle Scholar
  26. Christensen OB, Kjellström E, Zorita E (2015) Projected change – atmosphere. In: BACC Author Team (ed) Second assessment of climate change for the Baltic Sea basin. Regional Climate Studies. Springer, Berlin, pp 217–233Google Scholar
  27. Cole JJ, Findley S, Pace ML (1988) Bacterial production in fresh- and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series 43:1–10CrossRefGoogle Scholar
  28. Cushing DH (1990) Plankton production and year-class strength in fish populations: an update of the Match/Mismatch hypothesis. Advances in Marine Biology 26:249–293CrossRefGoogle Scholar
  29. Dahlgren K, Olsen BR, Troedsson C, Båmstedt U (2012) Seasonal variation in wax ester concentration and gut content in a Baltic Sea copepod [Limnocalanus macrurus (Sars 1863)]. Journal of Plankton Research 34:286–297CrossRefGoogle Scholar
  30. Eilola K, Mårtensson S, Meier HEM (2013) Modeling the impact of reduced sea ice cover in future climate on the Baltic Sea biogeochemistry. Geophysical Reseach Letters 40:1–6CrossRefGoogle Scholar
  31. Fenchel T (1987) Ecology of protozoa: the biology of free-living phagotrophic protists. Springer, Berlin 197 ppGoogle Scholar
  32. Fenchel T, Kristensen LD, Rasmussen L (1990) Water column anoxia: vertical zonation of planktonic protozoa. Marine Ecology Progress Series 62:1–10CrossRefGoogle Scholar
  33. Flinkman J, Vuorinen I, Aro E (1992) Planktivorous Baltic herring (Clupea harengus) prey selectively on reproducing copepods and cladocerans. Canadian Journal of Fisheries and Aquatic Sciences 49:73–77CrossRefGoogle Scholar
  34. Flinkman J, Vuorinen I, Christiansen M (1994) Calanoid copepod eggs survive passage through fish digestive tracts. ICES Journal of Marine Science 51:127–129CrossRefGoogle Scholar
  35. Flinkman J, Aro E, Vuorinen I, Viitasalo M (1998) Changes in the northern Baltic zooplankton and herring nutrition from 1980s to 1990s: top-down and bottom-up processes at work. Marine Ecology Progress Series 165:127–136CrossRefGoogle Scholar
  36. Folke C, Hammar M, Jansson AM (1991) Life-support value of ecosystems: a case study of the Baltic Sea region. Ecological Economics 3:123–137CrossRefGoogle Scholar
  37. Fuhrman JA (2002) Community structure and function in prokaryotic marine plankton. Antonie van Leeuwenhoek 81:521–527CrossRefGoogle Scholar
  38. Funkey CP, Conley DJ, Reuss NS, Humborg C, Jilbert T, Slomp CP (2014) Hypoxia sustains Cyanobacteria blooms in the Baltic Sea. Environmental Science and Technology 48:2598–2602CrossRefGoogle Scholar
  39. Gismervik I, Andersen T (1997) Prey switching by Acartia clausi: experimental evidence and implications of intraguild predation assessed by a model. Marine Ecology Progress Series 157:247–259CrossRefGoogle Scholar
  40. Glaubitz S, Lueders T, Abraham WR, Jost G, Jürgens K, Labrenz M (2009) 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea. Environmental Microbiology 11:326–337CrossRefGoogle Scholar
  41. Glaubitz S, Kießlich K, Meeske C, Labrenz M, Jürgens K (2013) SUP05 dominates the gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the central Baltic and Black Seas. Applied and Environment Microbiology 79:2767–2776CrossRefGoogle Scholar
  42. Gocke K, Rheinheimer G (1991) A synoptic survey on bacterial numbers, biomass and activity along the middle line of the Baltic Sea. Kieler Meeresforschungen Sonderheft 8:1–7Google Scholar
  43. Gorokhova E, Fagerberg T, Hansson S (2004) Predation by herring (Clupea harengus) and sprat (Sprattus sprattus) on Cercopagis pengoi in a western Baltic Sea bay. ICES Journal of Marine Science 61:959–965CrossRefGoogle Scholar
  44. Gorokhova E, Hansson S, Höglander H, Andersen CM (2005) Stable isotopes show food web changes after invasion by the predatory cladoceran Cercopagis pengoi in a Baltic Sea bay. Oecologia 143:25–259CrossRefGoogle Scholar
  45. Gorokhova E, Lehtiniemi M, Viitasalo-Frösen S, Haddock SHD (2009) Molecular evidence for the occurrence of ctenophore Mertensia ovum in the northern Baltic Sea and implications for the status of the Mnemiopsis leidyi invasion. Limnology and Oceanography 54:2025–2033CrossRefGoogle Scholar
  46. Gorokhova E, Hajdu S, Larsson U (2014) Responses of phyto- and zooplankton communities to Prymnesium polylepis (Prymnesiales) bloom in the Baltic Sea. PLoS ONE 9(11):e112985CrossRefGoogle Scholar
  47. Granskog M, Kaartokallio H, Kuosa H, Thomas DN, Vainio J (2006) Sea ice in the Baltic Sea – a review. Estuarine, Coastal and Shelf Science 70:145–160CrossRefGoogle Scholar
  48. Grote J, Jost G, Labrenz M, Herndl GJ, Jürgens K (2008) Epsilonproteobacteria represent the major portion of chemoautotrophic bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black Seas. Applied and Environment Microbiology 74:7546–7551CrossRefGoogle Scholar
  49. Grote J, Schott T, Bruckner CG, Glöckner FO, Jost G et al (2012) Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. Proceedings of the National Academy of Sciences of the USA 109:506–510CrossRefGoogle Scholar
  50. Hagström Å, Pinhassi J, Zweifel UL (2000) Biogeographical diversity among marine bacterioplankton. Aquatic Microbial Ecology 21:231–244CrossRefGoogle Scholar
  51. Hajdu S, Larsson U, Moestrup O (1996) Seasonal dynamics of Chrysochromulina species (Prymnesiophyceae) in a coastal area and a nutrient-enriched inlet of the northern Baltic proper. Botanica Marina 39:281–295Google Scholar
  52. Hajdu S, Edler L, Olenina I, Witek B (2000) Spreading and establishment of the potentially toxic dinoflagellate Prorocentrum minimum in the Baltic Sea. International Review of Hydrobiology 85:561–575CrossRefGoogle Scholar
  53. Hajdu S, Pertola S, Kuosa H (2005) Prorocentrum minimum (Dinophyceae) in the Baltic Sea: morphology, occurrence – a review. Harmful Algae 4:471–480CrossRefGoogle Scholar
  54. Hakala T, Viitasalo M, Rita H, Aro E, Flinkman J, Vuorinen I (2003) Temporal and spatial variability in the growth rates of Baltic herring (Clupea harengus membras L.) larvae during summer. Marine Biology 142:25–33CrossRefGoogle Scholar
  55. Halinen K, Jokela J, Fewer DP, Wahlsten M, Sivonen K (2007) Direct evidence for production of microcystins by Anabaena strains from the Baltic Sea. Applied and Environment Microbiology 73:6543–6550CrossRefGoogle Scholar
  56. Hällfors G (2004) Checklist of Baltic Sea phytoplankton species. Baltic Sea Environment Proceedings 95:1–208Google Scholar
  57. Hänninen J, Vuorinen I, Hjelt P (2000) Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnology and Oceanography 45:703–710CrossRefGoogle Scholar
  58. Harding KC, Härkönen T (1999) Development in the Baltic grey seal (Halichoerus grypus) and ringed seal (Phoca hispida) populations during the 20th century. Ambio 28:619–627Google Scholar
  59. Heiskanen AS (1998) Factors governing sedimentation and pelagic nutrient cycles in the northern Baltic Sea. University of Helsinki, Tammer-Paino Oy, Tampere [PhD Thesis]Google Scholar
  60. HELCOM (2015) Manual for marine monitoring in the COMBINE programme of HELCOM. HELCOM, Helsinki, 413 pp.
  61. Henriksen P (2009) Long-term changes in phytoplankton in the Kattegat, the Belt Sea, the Sound and the western Baltic Sea. Journal of Sea Research 61:114–123CrossRefGoogle Scholar
  62. Hensen V (1887) Über die Bestimmung des Planktons oder des im Meer treibenden Materials an Pflanzen und Thieren. Bericht der Kommission zur wissenschaftlichen Untersuchung der deutschen Meere 5:1–108 [in German]Google Scholar
  63. Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2,000 km salinity gradient of the Baltic Sea. The ISME Journal 5:1571–1579CrossRefGoogle Scholar
  64. Herlemann DPR, Lundin D, Labrenz M, Jürgens K, Zheng Z et al (2013) Metagenomic de novo assembly of an aquatic representative of the Verrucomicrobia class Spartobacteria. mBio 4(3):e00569-12Google Scholar
  65. Herlemann DPR, Manecki M, Meeske C, Pollehne F, Labrenz M et al (2014) Uncoupling of bacterial and terrigenous dissolved organic matter dynamics in decomposition experiments. PLoS ONE 9(4):e93945CrossRefGoogle Scholar
  66. Hernroth L, Ackefors H (1979) The zooplankton of the Baltic Proper. A long-term investigation of the fauna, its biology and ecology. Report of the Fishery Board of Sweden, Institute of Marine Research 2:1–59Google Scholar
  67. Holmfeldt K, Dziallas C, Titelman J, Pohlmann K, Grossart HP, Riemann L (2009) Diversity and abundance of freshwater actinobacteria along environmental gradients in the brackish northern Baltic Sea. Environmental Microbiology 11:2042–2054CrossRefGoogle Scholar
  68. Hügler M, Sievert SM (2011) Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annual Review of Marine Sciences 3:261–289CrossRefGoogle Scholar
  69. Jaanus A, Andersson A, Olenina I, Törning K, Kaljurand K (2011) Changes in phytoplankton communities along a north-south gradient in the Baltic Sea between 1990 and 2008. Boreal Environment Research 16(supplement A):191–208Google Scholar
  70. Jochem F, Babenerd B (1989) Naked Dictyocha speculum – a new type of phytoplankton bloom in the western Baltic. Marine Biology 103:373–379CrossRefGoogle Scholar
  71. Johansson S (1983) Annual dynamics and production of rotifers in a eutrophication gradient in the Baltic Sea. Hydrobiologia 14:335–340CrossRefGoogle Scholar
  72. Johansson M, Gorokhova E, Larsson U (2004) Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper. Journal of Plankton Research 26:67–80CrossRefGoogle Scholar
  73. Johnson MD, Oldach D, Delwiche CF, Stoecker DK (2007) Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445:426–428CrossRefGoogle Scholar
  74. Jost G, Martens-Habbena W, Pollehne F, Schnetger B, Labrenz M (2010) Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the Eastern Gotland basin, Baltic Sea. FEMS Microbiology Ecology 71:226–236CrossRefGoogle Scholar
  75. Jürgens K, Massana R (2008) Protistan grazing on marine bacterioplankton. In: Kirchman DL (ed) Microbial ecology of the oceans, 2nd edn. Wiley, New York, pp 383–441CrossRefGoogle Scholar
  76. Kahru M, Elmgren R (2014) Multi-decadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 11:3619–3633CrossRefGoogle Scholar
  77. Kaitala S, Hällfors S, Maunula P (2011) Phytoplankton biomass and species succession. HELCOM Baltic Sea Environment Fact Sheet.
  78. Karlson K, Bonsdorff E, Rosenberg R (2007) The impact of benthic macrofauna for nutrient fluxes from Baltic Sea sediments. Ambio 36:161–167CrossRefGoogle Scholar
  79. Katajisto T (1996) Copepod eggs survive a decade in the sediments of the Baltic Sea. Hydrobiologia 320:153–159CrossRefGoogle Scholar
  80. Katajisto T (2004) Effects of anoxia and hypoxia on the dormancy and survival of subitaneous eggs of Acartia bifilosa (Copepoda: Calanoida). Marine Biology 145:751–757Google Scholar
  81. King N, Westbrook MJ, Young SL, Kuo A, Abedin M et al (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788CrossRefGoogle Scholar
  82. Kiørboe T, Saiz E, Viitasalo M (1996) Prey switching behaviours in the planktonic copepod Acartia tonsa. Marine Ecology Progress Series 143:65–75CrossRefGoogle Scholar
  83. Kisand V, Andersson N, Wikner J (2005) Bacterial freshwater species successfully immigrate to the brackish water environment in the northern Baltic. Limnology and Oceanography 50:945–956CrossRefGoogle Scholar
  84. Kivi K, Kuosa H, Tanskanen S (1996) An experimental study on the role of crustacean and microprotozoan grazers in the planktonic food web. Marine Ecology Progress Series 136:59–68CrossRefGoogle Scholar
  85. Klais R, Tamminen T, Kremp A, Spilling K, Olli K (2011) Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PLoS ONE 6(6):e21567CrossRefGoogle Scholar
  86. Klais R, Tamminen T, Kremp A, Spilling K, Woong An B et al (2013) Spring phytoplankton communities shaped by interannual weather variability and dispersal limitation: mechanisms of climate change effects on key coastal primary producers. Limnology and Oceanography 58:753–762CrossRefGoogle Scholar
  87. Koski M, Schmidt K, Engström-Öst J, Viitasalo M, Jónasdóttir SH et al (2002) Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnology and Oceanography 47:878–885CrossRefGoogle Scholar
  88. Kremp A, Tamminen T, Spilling K (2008) Dinoflagellate bloom formation in natural assemblages with diatoms: nutrient competition and growth strategies in Baltic spring phytoplankton. Aquatic Microbial Ecology 50:181–196CrossRefGoogle Scholar
  89. Kremp A, Lindholm T, Dreßler N, Erler K, Gerdts G et al (2009) Bloom forming Alexandrium ostenfeldii (Dinophyceae) in shallow waters of the Åland archipelago, Northern Baltic Sea. Harmful Algae 8:318–328CrossRefGoogle Scholar
  90. Kuosa H, Kivi K (1989) Bacteria and heterotrophic flagellates in the pelagic carbon cycle in the northern Baltic Sea. Marine Ecology Progress Series 53:93–100CrossRefGoogle Scholar
  91. Laamanen M, Kuosa H (2005) Annual variability of biomass and heterocysts of the N2-fixing cyanobacterium Aphanizomenon flos-aquae in the Baltic Sea with reference to Anabaena spp. and Nodularia spumigena. Boreal Environment Research 10:19–30Google Scholar
  92. Laanemets J, Kononen K, Pavelson J, Poutanen EL (2004) Vertical location of seasonal nutriclines in the western Gulf of Finland. Journal of Marine Systems 52:1–13CrossRefGoogle Scholar
  93. Labrenz M, Sintes E, Toetzke F, Zumsteg A, Herndl GJ et al (2010) Relevance of a crenarchaeotal subcluster related to Candidatus Nitrosopumilus maritimus to ammonia oxidation in the suboxic zone of the central Baltic Sea. The ISME Journal 4:1496–1508CrossRefGoogle Scholar
  94. Labrenz M, Grote J, Mammitzsch K, Boschker HTS, Laue M et al (2013) Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant Epsilonproteobacterium isolated from a pelagic redoxcline, and an emended description of the genus Sulfurimonas. International Journal of Systematic and Evolutionary Microbiology 63:4141–4148CrossRefGoogle Scholar
  95. Lagus A (2009) Role of nutrients in regulation of phytoplankton community in the Archipelago Sea, northern Baltic Sea. Annales Universitatis Turkuensis, Ser. AII 239:1–56 [PhD Thesis]Google Scholar
  96. Langenheder S, Kisand V, Wikner J, Tranvik LJ (2003) Salinity as a structuring factor for the composition and performance of bacterioplankton degrading riverine DOC. FEMS Microbiology Ecology 45:189–202CrossRefGoogle Scholar
  97. Larsson U, Nyberg S, Andreasson K, Lindahl O, Wikner J (2010) Phytoplankton production – measurements with problems. Havet – om miljötillståndet i svenska havsområden 2010:26–29 [in Swedish]Google Scholar
  98. Larsson J, Celepli N, Ininbergs K, Dupont CL, Yooseph S et al (2014a) Picocyanobacteria containing a novel pigment gene cluster dominate the brackish-water Baltic Sea. The ISME Journal 8:1892–1903CrossRefGoogle Scholar
  99. Larsson K, Hajdu S, Kilpi M, Larsson R, Leito A et al (2014b) Effects of an extensive Prymnesium polylepis bloom on breeding eiders in the Baltic Sea. Journal of Sea Research 88:21–28CrossRefGoogle Scholar
  100. Leadbeater BSC, Yu Q, Kent J, Stekel D (2009) Three-dimensional images of choanoflagellate loricae. Proceedings of the Royal Society B 276:3–11CrossRefGoogle Scholar
  101. Lefébure R, Degerman R, Andersson A, Larsson S, Eriksson LO et al (2013) Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production. Global Change Biology 19:1358–1372CrossRefGoogle Scholar
  102. Legendre L, Rassoulzadegan F (1995) Plankton and nutrient dynamics in marine waters. Ophelia 41:153–172CrossRefGoogle Scholar
  103. Lehmann A, Myrberg K (2008) Upwelling in the Baltic Sea. Journal of Marine Systems 74:S3–S12CrossRefGoogle Scholar
  104. Lehtimäki J, Moisander P, Sivonen K, Kononen K (1997) Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Applied and Environment Microbiology 63:1647–1656Google Scholar
  105. Leppäkoski E, Olenin S (2000) Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biological Invasions 2:151–163CrossRefGoogle Scholar
  106. Lewandowska AM, Sommer U (2010) Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Marine Ecology Progress Series 405:101–111CrossRefGoogle Scholar
  107. Lignell R, Heiskanen AS, Kuosa H, Gundersen K, Kuuppo-Leinikki P et al (1993) Fate of phytoplankton spring bloom: sedimentation and carbon flow in the planktonic food web in the northern Baltic. Marine Ecology Progress Series 94:239–252CrossRefGoogle Scholar
  108. Lignell R, Hoikkala L, Lahtinen T (2008) Effects of inorganic nutrients, glucose and solar radiation on bacterial growth and exploitation of dissolved organic carbon and nitrogen in the northern Baltic Sea. Aquatic Microbial Ecology 51:209–221CrossRefGoogle Scholar
  109. Lindholm T, Nummelin C (1999) Red tide of the dinoflagellate Heterocapsa triquetra (Dinophyta) in a ferry-mixed coastal inlet. Hydrobiologia 393:245–251CrossRefGoogle Scholar
  110. Lohmann H (1908) Untersuchungen zur Feststellung des vollständigen Gehaltes des Meeres an Plankton. Wissenschaftliche Meeresuntersuchung Abteilung Kiel N.F. 10:131–370 [in German]Google Scholar
  111. Lumberg A, Ojaveer E (1991) On the environment and zooplankton dynamics in the Gulf of Finland in 1961–1990. Proceedings of the Estonian Academy of Sciences, Biology and Ecology 1(N3):131–140Google Scholar
  112. Lundström K, Hjerne O, Lunneryd SG, Karlsson O (2010) Understanding the diet composition of marine mammals: grey seals (Halichoerus grypus) in the Baltic Sea. ICES Journal of Marine Science 67:1230–1239Google Scholar
  113. Maar M, Visser AW, Nielsen TG, Stips A, Saito H (2006) Turbulence and feeding behaviour affect the vertical distributions of Oithona similis and Microsetella norwegica. Marine Ecology Progress Series 313:157–172CrossRefGoogle Scholar
  114. MacKenzie BR, Köster FW (2004) Fish production and climate: sprat in the Baltic Sea. Ecology 85:784–794CrossRefGoogle Scholar
  115. MacKenzie BR, Alheit J, Conley DJ, Holm P, Kinze CK (2002) Ecological hypotheses for a historical reconstruction of upper trophic level biomass in the Baltic Sea and Skagerrak. Canadian Journal of Fisheries and Aquatic Sciences 59:173–190CrossRefGoogle Scholar
  116. MacKenzie BR, Gislason H, Möllmann C, Köster FW (2007) Impact of 21st century climate change on the Baltic Sea fish community and fisheries. Global Change Biology 13:1–20CrossRefGoogle Scholar
  117. MacKenzie BR, Eero M, Ojaveer H (2011) Could seals prevent cod recovery in the Baltic Sea? PLoS ONE 6(5):e18998CrossRefGoogle Scholar
  118. Majaneva M, Rintala JM, Hajdu S, Hällfors S, Hällfors G et al (2012) The extensive bloom of alternate-stage Prymnesium polylepis (Haptophyta) in the Baltic Sea during autumn–spring 2007–2008. European Journal of Phycology 47:310–320CrossRefGoogle Scholar
  119. Marcotte BM (1982) Evolution within the Crustacea. Part 2: Copepoda. In: Abele LG (ed) The biology of Crustacea, vol 1. Academic Press, New York, pp 185–197Google Scholar
  120. Meier HEM (2015) Projected change – marine physics. In: BACC Author Team (ed) Second assessment of climate change for the Baltic Sea basin. Regional Climate Studies. Springer, Berlin, pp 243–252Google Scholar
  121. Meier HEM, Andersson HC, Eilola K, Gustafsson BG, Kuznetsov I et al (2011) Hypoxia in future climates – a model ensemble study for the Baltic Sea. Geophysical Reseach Letters 38:L24608Google Scholar
  122. Meier HEM, Müller-Karulis B, Andersson HC, Dieterich C, Eilola K et al (2012) Impact of climate change on ecological quality indicators and biogeochemical fluxes in the Baltic Sea: A multi-model ensemble study. Ambio 41:558–573CrossRefGoogle Scholar
  123. Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451:55–68CrossRefGoogle Scholar
  124. Miyashita LK, Gaeta SA, Lopes RM (2011) Life cycle and reproductive traits of marine podonids (Cladocera, Onychopoda) in a coastal subtropical area. Journal of Plankton Research 33:779–792CrossRefGoogle Scholar
  125. Möllmann C, Kornilovs G, Sidrevics L (2000) Long-term dynamics of main mesozooplankton species in the central Baltic Sea. Journal of Plankton Research 22:2015–2038CrossRefGoogle Scholar
  126. Möllmann C, Kornilovs G, Fetter M, Köster FW (2005) Climate, zooplankton and pelagic fish growth in the central Baltic Sea. ICES Journal of Marine Science 62:1270–1280CrossRefGoogle Scholar
  127. Muro-Pastor AM, Hess WR (2012) Heterocyst differentiation: from single mutants to global approaches. Trends in Microbiology 20:549–557CrossRefGoogle Scholar
  128. Myung G, Hyung SK, Jong SP, Myung GP, Wonho Y (2011) Population growth and plastic type of Myrionecta rubra depend on the kinds of available cryptomonad prey. Harmful Algae 10:536–541CrossRefGoogle Scholar
  129. Nissling A, Müller A, Hinrichsen HH (2003) Specific gravity and vertical distribution of sprat (Sprattus sprattus) eggs in the Baltic Sea. Journal of Fish Biology 63:280–299CrossRefGoogle Scholar
  130. Ojaveer E, Lindroth A, Bagge O, Lehtonen H, Toivonen J (1981) Fish and Fisheries. In: Voipio A (ed) The Baltic Sea. Elsevier Oceanography Series, vol 30, pp 275–350Google Scholar
  131. Ojaveer E, Lumberg A, Ojaveer H (1998) Highlights of zooplankton dynamics in Estonian waters (Baltic Sea). ICES Journal of Marine Science 55:748–755CrossRefGoogle Scholar
  132. Ojaveer H, Simm M, Lankov A (2004) Population dynamics and ecological impact of the non-indigenous Cercopagis pengoi in the Gulf of Riga (Baltic Sea). Hydrobiologia 522:261–269CrossRefGoogle Scholar
  133. Olenina I, Hajdu S, Edler L, Andersson A, Wasmund N et al (2006) Biovolumes and size-classes of phytoplankton in the Baltic Sea. Baltic Sea Environment Proceedings 106:1–144Google Scholar
  134. Olli K, Trunov K (2010) Abundance and distribution of vernal bloom dinoflagellate cysts in the Gulf of Finland and Gulf of Riga (the Baltic Sea). Deep-Sea Research II 57:235–242CrossRefGoogle Scholar
  135. Olli K, Klais R, Tamminen T, Ptacnik R, Andersen T (2011) Long term changes in the Baltic Sea phytoplankton community. Boreal Environment Research 16:3–14Google Scholar
  136. Olli K, Ptacnik R, Andersen T, Trikk O, Klais R et al (2014) Against the tide: recent diversity increase enhances resource use in a coastal system. Limnology and Oceanography 59:267–274CrossRefGoogle Scholar
  137. Österblom H, Hansson S, Larsson U, Hjerne O, Wulff F et al (2007) Human-induced trophic cascades and ecological regime shifts in the Baltic Sea. Ecosystems 10:877–889CrossRefGoogle Scholar
  138. Paxinos R, Mitchell JG (2000) A rapid Utermöhl method for estimating algal numbers. Journal of Plankton Research 22:2255–2262CrossRefGoogle Scholar
  139. Pearre S (1982) Estimating prey preference by predators: uses of various indices, and a proposal of another based on χ2. Canadian Journal of Fisheries and Aquatic Sciences 39:914–923CrossRefGoogle Scholar
  140. Pertola S, Koski M, Viitasalo M (2002) Stoichiometry of mesozooplankton in N- and P-limited areas of the Baltic Sea. Marine Biology 140:425–434CrossRefGoogle Scholar
  141. Pinhassi J, Winding A, Binnerup SJ, Zweifel UL, Riemann B, Hagström Å (2003) Spatial variability in bacterioplankton community composition at the Skagerrak-Kattegat front. Marine Ecology Progress Series 255:1–13CrossRefGoogle Scholar
  142. Ptacnik R, Andersen T, Brettum P, Lepistö L, Willén E (2010) Regional species pools control community saturation in lake phytoplankton. Proceedings of the Royal Society B 277:3755–3764CrossRefGoogle Scholar
  143. Rajasilta M, Hänninen J, Vuorinen I (2014) Decreasing salinity improves the feeding conditions of the Baltic herring (Clupea harengus membras) during spring in the Bothnian Sea, northern Baltic. ICES Journal of Marine Science 71:1148–1152CrossRefGoogle Scholar
  144. Rand PS, Stewart DJ (1998) Prey fish exploitation, salmonine production, and pelagic food web efficiency in Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences 55:318–327CrossRefGoogle Scholar
  145. Rantajärvi E, Olsonen R, Hällfors S, Leppänen JM, Raateoja M (1998) Effect of sampling frequency on detection of natural variability in phytoplankton: unattended high-frequency measurements on board ferries in the Baltic Sea. ICES Journal of Marine Science 55:697–704CrossRefGoogle Scholar
  146. Remane A (1934) Die Brackwasserfauna. Verhandlungen der Deutschen Zoologischen Gesellschaft 36:34–74 [in German]Google Scholar
  147. Repka S, Meyerhöfer M, von Bröckel K, Sivonen K (2004) Associations of cyanobacterial toxin, nodularin, with environmental factors and zooplankton in the Baltic Sea. Microbial Ecology 47:350–358CrossRefGoogle Scholar
  148. Rheinheimer G (1974) Bakterien und Pilze. In: Magaard L, Rheinheimer G (eds) Meereskunde der Ostsee. Springer, Berlin, pp 161–170 [in German]CrossRefGoogle Scholar
  149. Rheinheimer G (ed) (1977) Microbial ecology of a brackish water environment. Ecological Studies, vol 25. Springer, Berlin, 296 ppGoogle Scholar
  150. Rheinheimer G (1984) Bacterial ecology of the North and Baltic seas. Botanica Marina 27:277–299Google Scholar
  151. Riemann L, Leitet C, Pommier T, Simu K, Holmfeldt K et al (2008) The native bacterioplankton community in the central Baltic Sea is influenced by freshwater bacterial species. Applied and Environment Microbiology 74:503–515CrossRefGoogle Scholar
  152. Rönkkönen S, Ojaveer E, Raid T, Viitasalo M (2003) Long-term changes in the Baltic herring growth. Canadian Journal of Fisheries and Aquatic Sciences 61:219–229CrossRefGoogle Scholar
  153. Rudstam LG, Hansson S, Johansson S, Larsson U (1992) Dynamics of planktivory in a coastal area of the northern Baltic Sea. Marine Ecology Progress Series 80:159–173CrossRefGoogle Scholar
  154. Rychert K (2011) Communities of heterotrophic protists (Protozoa) in the near-bottom zone of the Gdańsk basin. Oceanological and Hydrobiological Studies 40:67–73CrossRefGoogle Scholar
  155. Salka I, Wurzbacher C, Garcia SL, Labrenz M, Jürgens K, Grossart HP (2014) Distribution of acI-actinorhodopsin genes in Baltic Sea salinity gradients indicates adaptation of facultative freshwater photoheterotrophs to brackish waters. Environmental Microbiology 16:586–597CrossRefGoogle Scholar
  156. Samuelsson K, Berglund J, Haecky P, Andersson A (2002) Structural changes in an aquatic microbial food web caused by inorganic nutrient addition. Aquatic Microbial Ecology 29:29–38CrossRefGoogle Scholar
  157. Samuelsson K, Berglund J, Andersson A (2006) Factors controlling the heterotrophic flagellate and ciliate community along a brackish water primary production gradient. Journal of Plankton Research 28:345–359CrossRefGoogle Scholar
  158. Sandberg J, Andersson A, Johansson S, Wikner J (2004) Pelagic food web structure and carbon budget in the northern Baltic Sea: potential importance of terrigenous carbon. Marine Ecology Progress Series 268:13–29CrossRefGoogle Scholar
  159. Sandström O (1980) Selective feeding by Baltic herring. Hydrobiologia 69:199–207CrossRefGoogle Scholar
  160. Schneider G, Behrends G (1994) Population dynamics and the trophic role of Aurelia aurita medusae in the Kiel Bight and western Baltic. ICES Journal of Marine Science 51:359–367CrossRefGoogle Scholar
  161. Schumann R, Rieling T, Görs S, Hammer A, Selig U, Schiewer U (2003) Viability of bacteria from different aquatic habitats I. Environmental conditions and productivity. Aquatic Microbial Ecology 32:121–135CrossRefGoogle Scholar
  162. Segerstråle SG (1969) Biological fluctuations in the Baltic Sea. Progress in Oceanography 5:169–184CrossRefGoogle Scholar
  163. Seppälä J, Ylöstalo P, Kaitala S, Hällfors S, Raateoja M, Maunula P (2007) Ship-of-opportunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic Sea. Estuarine, Coastal and Shelf Science 73:489–500CrossRefGoogle Scholar
  164. Setälä O, Kivi K (2003) Planktonic ciliates in the Baltic Sea in summer. Distribution, species association and estimated grazing impact. Aquatic Microbial Ecology 32:287–297CrossRefGoogle Scholar
  165. Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology 28:175–211CrossRefGoogle Scholar
  166. Simu K, Holmfeldt K, Zweifel UL, Hagström Å (2005) Culturability and coexistence of colony-forming and single-cell marine bacterioplankton. Applied and Environment Microbiology 71:4793–4800CrossRefGoogle Scholar
  167. Sivonen K, Kononen K, Carmichael WW, Dahlem AM, Rinehart KL et al (1989) Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Applied and Environment Microbiology 55:1990–1995Google Scholar
  168. Sivonen K, Niemelä SI, Niemi RM, Lepistö L, Luoma TH, Räsänen LA (1990) Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters. Hydrobiologia 190:267–275CrossRefGoogle Scholar
  169. Smayda TJ, Trainer VL (2010) Dinoflagellate blooms in upwelling systems: seeding, variability, and contrasts with diatom bloom behaviour. Progress in Oceanography 85:92–107CrossRefGoogle Scholar
  170. Smetacek V (1981) The annual cycle of protozooplankton in the Kiel Bight. Marine Biology 63:1–11CrossRefGoogle Scholar
  171. Snoeijs P, Häubner N (2014) Astaxanthin dynamics in Baltic Sea mesozooplankton communities. Journal of Sea Research 85:131–143CrossRefGoogle Scholar
  172. Sprules W, Bowerman J (1988) Omnivory and food web lengths in zooplankton food webs. Ecology 69:418–426CrossRefGoogle Scholar
  173. Stewart KD, Mattox KR (1980) Phylogeny of phytoflagellates. In: Cox ER (ed) Phytoflagellates. Developments in Marine Biology, vol 2. Elsevier, Amsterdam, pp 433–462Google Scholar
  174. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK et al (eds) (2013) The physical science basis – contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge 1535 ppGoogle Scholar
  175. Straile D (1997) Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator-prey weight ratio, and taxonomic group. Limnology and Oceanography 42:1375–1385CrossRefGoogle Scholar
  176. Suikkanen S, Laamanen M, Huttunen M (2007) Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuarine, Coastal and Shelf Science 71:580–592CrossRefGoogle Scholar
  177. Suikkanen S, Pulina S, Engström-Öst J, Lehtiniemi M, Lehtinen S, Brutemark A (2013) Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS ONE 8(6):e66475CrossRefGoogle Scholar
  178. Tamminen T, Andersen T (2007) Seasonal phytoplankton nutrient limitation patterns as revealed by bioassays over Baltic Sea gradients of salinity and eutrophication. Marine Ecology Progress Series 340:121–138CrossRefGoogle Scholar
  179. Telesh I, Heerkloss R (2004) Atlas of Estuarine Zooplankton of the Southern and Eastern Baltic Sea. Part II: Crustacea. Verlag Dr. Kovač, Hamburg, p 118Google Scholar
  180. Thompson RM, Hemberg M, Strazomski BM, Shurin JB (2007) Trophic levels and trophic tangels: the prevalence of omnivory in real food webs. Ecology 88:612–617CrossRefGoogle Scholar
  181. Uiboupin R, Laanemets J, Sipelgas L, Raag L, Lips I, Buhhalko N (2012) Monitoring the effect of upwelling on the chlorophyll a distribution in the Gulf of Finland (Baltic sea) using remote sensing and in situ data. Oceanologia 54:395–419CrossRefGoogle Scholar
  182. Uitto A, Heiskanen AS, Lignell R, Autio R, Pajuniemi R (1997) Summer dynamics of the coastal planktonic food web in the northern Baltic Sea. Marine Ecology Progress Series 151:27–41CrossRefGoogle Scholar
  183. Utermöhl H (1931) Neue Wege in der quantitativen Erfassung des Planktons (mit besonderer Berücksichtigung des Ultraplanktons). Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 5:567–595 [in German]Google Scholar
  184. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9:1–38 [in German]Google Scholar
  185. Vahtera E, Conley DJ, Gustafsson BG, Kuosa H, Pitkänen H et al (2007) Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36:186–194CrossRefGoogle Scholar
  186. Viherluoto M, Kuosa H, Flinkman J, Viitasalo M (2000) Food utilisation of pelagic mysids, Mysis mixta and M. relicta during their growing season in the northern Baltic Sea. Marine Biology 136:553–559CrossRefGoogle Scholar
  187. Viitasalo M (1992a) Mesozooplankton of the Gulf of Finland and northern Baltic Proper – a review of monitoring data. Ophelia 35:147–168CrossRefGoogle Scholar
  188. Viitasalo M (1992b) Calanoid resting eggs in the Baltic Sea: implications for the population dynamics of Acartia bifilosa (Copepoda). Marine Biology 114:397–405CrossRefGoogle Scholar
  189. Viitasalo M, Katajisto T (1994) Mesozooplankton resting eggs in the Baltic Sea – identification and vertical distribution in laminated and mixed sediments. Marine Biology 120:455–466CrossRefGoogle Scholar
  190. Viitasalo M, Rautio M (1998) Zooplanktivory by Praunus flexuosus (Crustacea: Mysidacea): functional responses and prey selection in relation to prey escape responses. Marine Ecology Progress Series 174:77–87CrossRefGoogle Scholar
  191. Viitasalo M, Koski M, Pellikka K, Johansson S (1995) Seasonal and long-term variations in the body size of planktonic copepods in the northern Baltic Sea. Marine Biology 123:241–250CrossRefGoogle Scholar
  192. Viitasalo M, Kiørboe T, Flinkman J, Pedersen LW, Visser AW (1998) Predation vulnerability of planktonic copepods: consequences of predator foraging strategies and prey sensory abilities. Marine Ecology Progress Series 175:129–145CrossRefGoogle Scholar
  193. Viitasalo M, Rosenberg M, Heiskanen AS, Koski M (1999) Sedimentation of copepod fecal material in the coastal northern Baltic Sea: where did all the pellets go? Limnology and Oceanography 44:1388–1399CrossRefGoogle Scholar
  194. Viitasalo M, Flinkman J, Viherluoto M (2001) Zooplanktivory in the Baltic Sea: a comparison of prey selectivity by Clupea harengus and Mysis mixta, with reference to prey escape reactions. Marine Ecology Progress Series 216:191–200CrossRefGoogle Scholar
  195. Viitasalo M, Blenckner T, Gårdmark A, Kaartokallio H, Kautsky L et al (2015) Environmental impacts – marine ecosystems. In BACC Author Team (ed) Second assessment of climate change for the Baltic Sea basin. Regional Climate Studies. Springer, Berlin, pp 363–380Google Scholar
  196. Vuorinen I, Rajasilta M, Salo J (1983) Selective predation and habitat shift in a copepod species – support for the predation hypothesis. Oecologia 59:62–64CrossRefGoogle Scholar
  197. Vuorinen I, Hänninen J, Rajasilta M, Laine P, Eklund J et al (2015) Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas – implications for environmental monitoring. Ecological Indicators 50:196–205CrossRefGoogle Scholar
  198. Wasmund N, Göbel J, von Bodungen B (2008) 100-years-changes in the phytoplankton community of Kiel Bight (Baltic Sea). Journal of Marine Systems 73:300–322CrossRefGoogle Scholar
  199. Wasmund N, Tuimala J, Suikkanen S, Vandepitte L, Kraberg A (2011) Long-term trends in phytoplankton composition in the western and central Baltic Sea. Journal of Marine Systems 87:145–159CrossRefGoogle Scholar
  200. Webb DG, Weaver AJ (1988) Predation and the evolution of free spawning in marine calanoid copepods. Oikos 51:189–192CrossRefGoogle Scholar
  201. Weber F, Anderson R, Foissner W, Mylnikov AP, Jürgens K (2014) Morphological and molecular approaches reveal highly stratified protist communities along Baltic Sea pelagic redox gradients. Aquatic Microbial Ecology 73:1–16CrossRefGoogle Scholar
  202. Welch HE (1968) Relationship between assimilation efficiencies and growth efficiencies for aquatic consumers. Ecology 49:755–759CrossRefGoogle Scholar
  203. Westin L, Nissling (1991) Effects of salinity on spermatozoa motility, percentage of fertilized eggs and egg development of Baltic cod (Gadus morhua), and implications for cod stock fluctuations in the Baltic. Marine Biology 108:5–9CrossRefGoogle Scholar
  204. Wieland K, Waller U, Schnack D (1994) Development of Baltic cod eggs at different levels of temperature and oxygen content. Dana 10:163–177Google Scholar
  205. Wieland K, Jarre-Teichmann A, Horbowa K (2000) Changes in the timing of spawning of Baltic cod: possible causes and implications for recruitment. ICES Journal of Marine Science 57:452–464CrossRefGoogle Scholar
  206. Wikner J, Andersson A (2012) Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea. Global Change Biology 18:2509–2519CrossRefGoogle Scholar
  207. Witek M (1998) Annual changes of abundance and biomass of planktonic ciliates in the Gdańsk basin, southern Baltic. International Review of Hydrobiology 83:163–182CrossRefGoogle Scholar
  208. Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K et al (2009) Changes in biogenic carbon flow in response to sea surface warming. Proceedings of the National Academy of Sciences of the USA 106:7067–7072CrossRefGoogle Scholar
  209. Wright JJ, Konwar KM, Hallam SJ (2012) Microbial ecology of expanding oxygen minimum zones. Nature Reviews Microbiology 10:381–394Google Scholar
  210. Wylezich C, Karpov SA, Mylnikov AP, Anderson R, Jürgens K (2012) Ecologically relevant choanoflagellates collected from hypoxic water masses of the Baltic Sea have untypically mitochondrial cristae. BMC Microbiology 12:271, 13 ppGoogle Scholar
  211. Zöllner E, Hoppe HG, Sommer U, Jürgens K (2009) Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnology and Oceanography 54:262–275CrossRefGoogle Scholar
  212. Zweifel UL, Norrman B, Hagström Å (1993) Consumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients. Marine Ecology Progress Series 101:23–32CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Agneta Andersson
    • 1
  • Timo Tamminen
    • 2
  • Sirpa Lehtinen
    • 2
  • Klaus Jürgens
    • 3
  • Matthias Labrenz
    • 3
  • Markku Viitasalo
    • 2
  1. 1.Department of Ecology and Environmental SciencesUmeå UniversityUmeåSweden
  2. 2.Marine Research CentreFinnish Environment Institute 140HelsinkiFinland
  3. 3.Leibniz Institute for Baltic Sea ResearchWarnemünde, RostockGermany

Personalised recommendations