Fabrication of Nanowire Crossbars

Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 82)

Abstract

Nanowire crossbars gained an increasing interest in the last years, namely because the fabrication techniques have become more mature and versatile. Parallel research works have been carried out on different levels ranging from device to circuit and system levels in order to identify and address the challenges facing the utilization of this emerging paradigm in the future.

Keywords

Sacrificial Layer Chemical Mechanical Planarization Standard Photolithography Access Transistor Standard Photolithography Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Moselund KE, Bouvet D, Ben Jamaa HH, Atienza D, Leblebici Y, De Micheli G, Ionescu AM (2008) Prospects for logic-on-a-wire. Microelectron Eng 85:1406–1409CrossRefGoogle Scholar
  2. 2.
    Auzelyte V, Solak HH, Ekinci Y, MacKenzie R, Vrs J, Olliges S, Spolenak R (2008) Large area arrays of metal nanowires. Microelectron Eng 85(5–6):1131–1134CrossRefGoogle Scholar
  3. 3.
    Doherty L, Liu H, Milanovic V (2003) Application of MEMS technologies to nanodevices. In: ISCAS’03. Proceedings of the 2003 International Symposium on Circuits and systems, vol 3, pp III–934–III–937Google Scholar
  4. 4.
    Doherty L, Liu H, Milanovic V (2003) Application of MEMS technologies to nanodevices 3(5):III–934–III–937Google Scholar
  5. 5.
    Ng RMY, Wang T, Chan M (2007) A new approach to fabricate vertically stacked single-crystalline silicon nanowires. pp 133–136Google Scholar
  6. 6.
    Center for Micro- and Nanotechnologies (CMI) at EPFL. Available at: http://cmi.epfl.ch
  7. 7.
    Ben Jamaa MH, Cerofolini G, Leblebici Y, De Micheli G (2009) Nanowire Crossbar Framework Optimized for the Multi-Spacer Patterning Technique. In: Proceedings of CASES, Granoble, FranceGoogle Scholar
  8. 8.
    Wagner RS, Ellis WC (1964) Vapor-liquid-solid mechanism for single crystal growth. Appl Phys Lett 4(5):89–90CrossRefGoogle Scholar
  9. 9.
    Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287(5457):1471–1473CrossRefGoogle Scholar
  10. 10.
    Cui Y, Duan X, Hu J, Lieber CM (2000) Doping and electrical transport in silicon nanowires. J Phys Chem B 4(22):5213–5216CrossRefGoogle Scholar
  11. 11.
    He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nanotechnol 1(1):42–46CrossRefGoogle Scholar
  12. 12.
    Lauhon LJ, Gudiksen MS, Wang D, Lieber CM (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420:57–61CrossRefGoogle Scholar
  13. 13.
    Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617–620CrossRefGoogle Scholar
  14. 14.
    Hsu J-F, Huang B-R, Huang C-S (2005) The growth of silicon nanowires using a parallel plate structure. In: The 5th IEEE Conference on Nanotechnology, vol 2, pp 605–608Google Scholar
  15. 15.
    Yang C, Zhong Z, Lieber CM (2005) Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310(5752):1304–1307CrossRefGoogle Scholar
  16. 16.
    Hochbaum AI, Fan R, He R, Yang P (2005) Controlled growth of Si nanowire arrays for device integration. Nano Lett 5(3):457–460CrossRefGoogle Scholar
  17. 17.
    Schmidt V, Riel H, Senz S, Karg S, Riess W, Gösele U (2006) Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2(1):85–88CrossRefGoogle Scholar
  18. 18.
    Hayden O, Björk M, Schmid H, Riel H, Drechsler U, Karg S, Lörtscher E, Riess W (2007) Fully depleted nanowire field-effect transistor in inversion mode. Small 3(2):230–234CrossRefGoogle Scholar
  19. 19.
    Huang Y, Duan X, Wei Q, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633CrossRefGoogle Scholar
  20. 20.
    Moselund KE, Bouvet D, Tschuor L, Pot V, Dainesi P, Eggimann C, Thomas NL, Houdré R, Ionescu AM (2007) Cointegration of gate-all-around MOSFETs and local silicon-on-insulator optical waveguides on bulk silicon. IEEE Trans Nanotechnol 6(1):118–125CrossRefGoogle Scholar
  21. 21.
    Lee K-N, Jung S-W, Kim W-H, Lee M-H, Shin K-S, Seong W-K (2007) Well controlled assembly of silicon nanowires by nanowire transfer method. Nanotechnology 18(44):445302 (7pp)Google Scholar
  22. 22.
    Suk SD, Lee S-Y, Kim S-M, Yoon EJ, Kim M-S, Li M, Oh CW, Yeo KH, Kim SH, Shin D-S, Lee K-H, Park HS, Han JN, Park C, Park J-B, Kim D-W, Park D, Ryu B-I (2005) High performance 5 nm radius twin silicon nanowire MOSFET (TSNWFET): fabrication on bulk Si wafer, characteristics, and reliability. In: IEEE Transactions on Nanotechnology, pp 717–720Google Scholar
  23. 23.
    Koo S-M, Fujiwara A, Han J-P, Vogel EM, Richter CA, Bonevich JE (2004) High inversion current in silicon nanowire field effect transistors. Nano Lett 4(11):2197–2201CrossRefGoogle Scholar
  24. 24.
    Kedzierski J, Bokor J (1997) Fabrication of planar silicon nanowires on silicon-on-insulator using stress limited oxidation. J Vac Sci Technol B 15(6):2825–2828CrossRefGoogle Scholar
  25. 25.
    Vazquez-Mena O, Villanueva G, Savu V, Sidler K, van den Boogaart MAF, Brugger J (2008) Metallic nanowires by full wafer stencil lithography. Nano Lett 8(11):3675–3682CrossRefGoogle Scholar
  26. 26.
    Hållstedt J, Hellström PE, Zhang Z, Malm B, Edholm J, Lu J, Zhang SL, Radamson H, Östling M (2006) A robust spacer gate process for deca-nanometer high-frequency MOSFETs. Microelectron Eng 83(3):434–439CrossRefGoogle Scholar
  27. 27.
    Choi Y-K, Lee JS, Zhu J, Somorjai GA, Lee LP, Bokor J (2003) Sublithographic nanofabrication technology for nanocatalysts and DNA chips. J Vac Sci Technol B: Microelectron Nanometer Struct 21:2951–2955CrossRefGoogle Scholar
  28. 28.
    Cerofolini G (2007) Realistic limits to computation. II. The technological side. Appl Phys A 86(1):31–42CrossRefGoogle Scholar
  29. 29.
    Wu W, Jung G-Y, Olynick DL, Straznicky J, Li Z, Li X, Ohlberg DAA, Chen Y, Wang S-Y, Liddle JA, Tong WM, Williams RS (2005) One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography. Appl Phys A: Mater Sci Process 80(6):1173–1178CrossRefGoogle Scholar
  30. 30.
    Jung GY, Johnston-Halperin E, Wu W, Yu Z, Wang SY, Tong WM, Li Z, Green JE, Sheriff BA, Boukai A, Bunimovich Y, Heath JR, Williams RS (2006) Circuit fabrication at 17 nm half-pitch by nanoimprint lithography. Nano Lett 6(3):351–354CrossRefGoogle Scholar
  31. 31.
    Sonkusale SR, Amsinck CJ, Nackashi DP, Spigna NHD, Barlage D, Johnson M, Franzon PD (2005) Fabrication of wafer scale, aligned sub-25nm nanowire and nanowire templates using planar edge defined alternate layer process. Phys E: Low-dimensional Syst Nanostruct 28(2):107–114CrossRefGoogle Scholar
  32. 32.
    Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77:1399–1401CrossRefGoogle Scholar
  33. 33.
    Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66–69CrossRefGoogle Scholar
  34. 34.
    Chen Y, Ohlberg DAA, Li X, Stewart DR, Stanley Williams R, Jeppesen JO, Nielsen KA, Stoddart JF, Olynick DL, Anderson E (2003) Nanoscale molecular-switch devices fabricated by imprint lithography. Appl Phys Lett 82:1610–1612CrossRefGoogle Scholar
  35. 35.
    Zasadzinski JA, Viswanathan R, Madsen L, Garnaes J, Schwartz DK (1994) Langmuir-Blodgett films. Science 263(5154):1726–1733CrossRefGoogle Scholar
  36. 36.
    Wu W, Jung G-Y, Olynick DL, Straznicky J, Li Z, Li X, Ohlberg DAA, Chen Y, Wang S-Y, Liddle JA, Tong WM, Williams RS (2005) One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography. Appl Phys A: Mater Sci Process 80(6):1173–1178CrossRefGoogle Scholar
  37. 37.
    Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM, Heath JR (2003) Ultrahigh-density nanowire lattices and circuits. Science 300(5616):112–115CrossRefGoogle Scholar
  38. 38.
    Green JE, Wook Choi J, Boukai A, Bunimovich Y, Johnston- Halperin E, Deionno E, Luo Y, Sheriff BA, Xu K, Shik Shin Y, Tseng HR, Stoddart JF, Heath JR (2007) A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445:414–417CrossRefGoogle Scholar
  39. 39.
    Luo Y, Collier CP, Jeppesen JO, Nielsen KA, DeIonno E, Ho G, Perkins J, Tseng H-R, Yamamoto T, Stoddart JF, Heath JR (2002) Two-dimensional molecular electronics circuits. J Chem Phys Phys Chem 3:519–525CrossRefGoogle Scholar
  40. 40.
    Ho G, Heath JR, Kondratenko M, Perepichka DF, Arseneault K, Pézolet M, Bryce MR (2005) The first studies of a tetrathiafulvalenesigma- acceptor molecular rectifier. Chem—A Eur J 11(10):2914–2922CrossRefGoogle Scholar
  41. 41.
    McCreery RL (2004) Molecular electronic junctions. Chem Mater 16(23):4477–4496CrossRefGoogle Scholar
  42. 42.
    Ashwell GJ, Urasinska B, Tyrrell WD (2006) Molecules that mimic Schottky diodes. Phys Chem Chem Phys (Incorporating Faraday Transactions) 8:3314–3319CrossRefGoogle Scholar
  43. 43.
    Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sampaio J, Raymo FM, Stoddart JF, Heath JR (2000) A [2]catenanebased solid state electronically reconfigurable switch. Science 289:1172–1175CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Kim S, McVittie J, Jagannathan H, Ratchford J, Chidsey C, Nishi Y, Wong H-S (2007) An integrated phase change memory cell with ge nanowire diode for cross-point memory. In: IEEE Symposium on VLSI Technology, pp 98–99Google Scholar
  45. 45.
    Voutsas AT, Hatalis MK (1992) Structure of as-deposited LPCVD silicon films at low deposition temperatures and pressures. J Electrochem Soc 139(9):2659–2665CrossRefGoogle Scholar
  46. 46.
    Voutsas AT, Hatalis MK (1993) Surface treatment effect on the grain size and surface roughness of as-deposited LPCVD polysilicon films. J Electrochem Soc 140(1):282–288CrossRefGoogle Scholar
  47. 47.
    Voutsas AT, Hatalis MK (1993) Deposition and crystallization of a-Si low pressure chemically vapor deposited films obtained by low-temperature pyrolysis of disilane. J Electrochem Soc 140(3):871–877CrossRefGoogle Scholar
  48. 48.
    Pott V (2008) Gate-all-around silicon nanowires for hybrid single electron transistor/CMOS applications. Ph.D. dissertation, Lausanne, 2008. Available at: http://library.ep.ch/theses/?nr=3983
  49. 49.
    Nakazawa K (1991) Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas. J Appl Phys 69(3):1703–1706CrossRefGoogle Scholar
  50. 50.
    Bergamini F, Bianconi M, Cristiani S, Gallerani L, Nubile A, Petrini S, Sugliani S (2008) Ion track formation in low temperature silicon dioxide. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 266(10):2475–2478CrossRefGoogle Scholar
  51. 51.
    Byon K, Tham D, Fischer JE, Johnson AT (2007) Systematic study of contact annealing: ambipolar silicon nanowire transistor with improved performance. Appl Phys Lett 90(14):143513CrossRefGoogle Scholar
  52. 52.
    Appenzeller J, Knoch J, Tutuc E, Reuter M, Guha S (2006) Dualgate silicon nanowire transistors with nickel silicide contacts. In: International Electron Devices Meeting, pp 1–4Google Scholar
  53. 53.
    Weber WM, Geelhaar L, Graham AP, Unger E, Duesberg GS, Liebau M, Pamler W, Cheze C, Riechert H, Lugli P, Kreupl F (2006) Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett 6(12):2660–2666CrossRefGoogle Scholar
  54. 54.
    Koo S-M, Edelstein MD, Li Q, Richter CA, Vogel EM (2005) Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors. Nanotechnology 16(9):1482–1485CrossRefGoogle Scholar
  55. 55.
    Ecoffey S, Mazza M, Pott V, Bouvet D, Schmid A, Leblebici Y, Declereq M, Ionescu A (2005) A new logic family based on hybrid MOSFET-polysilicon nanowires. pp 269–272Google Scholar
  56. 56.
    Hogg T, Chen Y, Kuekes P (2006) Assembling nanoscale circuits with randomized connections. IEEE Trans Nanotechnol 5(2):110–122CrossRefGoogle Scholar
  57. 57.
    Beckman R, Johnston-Halperin E, Luo Y, Green JE, Heath JR (2005) Bridging dimensions: demultiplexing ultrahigh density nanowire circuits. Science 310(5747):465–468CrossRefGoogle Scholar
  58. 58.
    Chua L (1971) Memristor—the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519CrossRefGoogle Scholar
  59. 59.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544Google Scholar
  60. 60.
    Linares-Barranco B, Serrano-Gotarredona T (2009) Memristance can explain spike-time-dependent plasticity in neural synapses. In: Nature Precedings, pp 1–4Google Scholar
  61. 61.
    Smerieri A, Berzina T, Erokhin V, Fontana MP (2008) A functional polymeric material based on hybrid electrochemically controlled junctions. Mater Sci Eng: C 28(1):18–22CrossRefGoogle Scholar
  62. 62.
    Borghetti J, Li Z, Straznicky J, Li X, Ohlberg DAA, Wu W, Stewart DR, Williams RS (2009) A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc Natl Acad Sci 106:1699–1703CrossRefGoogle Scholar
  63. 63.
    Toumazou C, Georgiou J, Drakakis E (1998) Current-mode analogue circuit representation of Hodgkin and Huxley neuron equations. Electron Lett 34(14):1376–1377CrossRefGoogle Scholar
  64. 64.
    Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83CrossRefGoogle Scholar
  65. 65.
    Stewart DR, Ohlberg DAA, Beck PA, Chen Y, Williams RS, Jeppesen JO, Nielsen KA, Stoddart JF (2004) Molecule independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett 4(1):133–136CrossRefGoogle Scholar
  66. 66.
    Jo SH, Kim K-H, Lu W (2009) High-density crossbar arrays based on a Si memristive system. Nano Lett 9(2):870–874CrossRefGoogle Scholar
  67. 67.
    Shenoy R, Gopalakrishnan K, Rettner C, Bozano L, King R, Kurdi B, Wickramasinghe H (2006) A new route to ultra-high density memory using the micro to nano addressing block (MNAB). In: VLSI Technol., pp 140–141Google Scholar
  68. 68.
    Gopalakrishnan K, Shenoy RS, Rettner C, King R, Zhang Y, Kurdi B, Bozano LD, Weslser JJ, Rothwell MB, Jurich M, Sanchez MI, Hernandez M, Rice PM, Risk WP, Wickramasinghe HK (2005) The micro to nano addressing block. In: IEEE Electron Devices Meeting, p 19.4Google Scholar
  69. 69.
    DeHon A, Lincoln P, Savage J (2003) Stochastic assembly of sublithographic nanoscale interfaces. IEEE Trans Nanotechnol 2(3):165–174CrossRefGoogle Scholar
  70. 70.
    Ben Jamaa MH, Leblebici Y, De Micheli G (2009) Decoding nanowire arrays fabricated with the multi-spacer patterning technique. In: Design Automation Conference (DAC), San Francisco, California, USAGoogle Scholar
  71. 71.
    International technology roadmap for semiconductors (ITRS) (2007) http://www.itrs.net/reports.html. Tech. Rep., 2007

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Commissariat à l’Energie Atomique (CEA-L DRT-LETI-DACLE-LISAN)GrenobleFrance

Personalised recommendations