Vegetation Phenology in Global Change Studies

  • Michael A. White
  • Nathaniel Brunsell
  • Mark D. Schwartz
Part of the Tasks for Vegetation Science book series (TAVS, volume 39)


Global change, encompassing natural and anthropogenic changes to the Earth system at sub-annual to geologic time scales, has strong interactions with vegetation phenology. In this chapter we will refer to global change as alterations to the Earth system that are certainly or probably influenced by human activity, primarily since the industrial revolution. This form of global change includes irrefutable anthropogenic alterations to terrestrial land cover and alterations to the global climate that are probably anthropogenically influenced. Within this context we discuss three aspects of vegetation phenology: the influence of vegetation phenology on general circulation models (GCMs); a wavelet analysis of phenological patterns and associated evidence of likely phenological responses to direct human-induced land cover alteration; and third, serious challenges regarding the use of phenological data and concepts in global change research.


Global Change Growing season length Land-atmosphere interactions Wavelets AVHRR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Asner, G., A. Townsend, and B. Braswell, Satellite observation of El Niño effects on Amazon forest phenology and productivity, Geophys. Res. Lett., 27, 981–984, 2000.CrossRefGoogle Scholar
  2. Bonan, G. B., A Land Surface Model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description user’s guide, National Center for Atmospheric Research, Boulder, CO, 150 pp., 1996.Google Scholar
  3. Bonan, G. B., S. Levis, L. Kergoat, and K W. Oleson, Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models, Global Biogeochem. Cycles, In press, 2002a.Google Scholar
  4. Bonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K. W. Oleson, A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics, Global Change Biol., Submitted, 2002b.Google Scholar
  5. Botta, A., N. Viovy, P. Ciais, P. Friedlingstein, and P. Monfray, A global prognostic scheme of leaf onset using satellite data, Global Change Biol., 6, 709–726, 2000.CrossRefGoogle Scholar
  6. Buermann, W., J. Dong, X. Zeng, R. B. Myneni, and R. E. Dickinson, Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations, J. Climate, 14, 3536–3550, 2001.CrossRefGoogle Scholar
  7. Claussen, M., and V. Gayler, The greening of the Sahara during the mid-Holocene: results of an interactive atmosphere-biosphere model, Global Ecol. Biogeogr., 6, 369–377, 1997.CrossRefGoogle Scholar
  8. Coops, N., Improvement in predicting stand growth of Pinus radiata (D. Don) across landscapes using NOAA AVHRR and Landsat MSS imagery combined with a forest growth process model (3-PGs), Photogram. Eng. Remote Sens., 65, 1149–1156, 1999.Google Scholar
  9. Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn, A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour. Res., 20, 682–690, 1984.CrossRefGoogle Scholar
  10. Cramer, W., A. Bondeau, F. I. Woodward, I. C. Prentice, R. A. Betts, V. Brovkin, P. M. Cox, V. Fisher, J. A. Foley, A. D. Friend, C. Kucharik, M. R. Lomas, N. Ramankutty, S. Sitch, B. Smith, A. White, and C. Young-Molling, Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models, Global Change Biol., 7, 357–373, 2001.CrossRefGoogle Scholar
  11. Csillag, F., and S. Kabos, Wavelets, boundaries, and the spatial analysis of landscape patterns, Écoscience, 9, 177–190, 2002.Google Scholar
  12. DeFries, R. S., L. Bounoua, and G. J. Collatz, Human modification of the landscape and surface climate in the next fifty years, Global Change Biol., 8(5), 438–458, 2002.CrossRefGoogle Scholar
  13. Dorman, J. L., and P. J. Sellers, A global climatology of albedo, roughness length, and stomatal resistance for atmospheric general circulation models as represented by a simple biosphere model (SiB). J. Appl. Meteorol., 28, 833–855, 1989.CrossRefGoogle Scholar
  14. Foley, J., S. Levis, M. Costa, W. Cramer, and D. Pollard, Incorporating dynamic vegetation cover within global climate models, Ecol. Appl., 10, 1620–1632, 2000.CrossRefGoogle Scholar
  15. Foster, D., G. Motzkin, and B. Slater, Land-use history as long-term broad-scale disturbance: regional forest dynamics in central New England, Ecosystems, 1, 96–119, 1998.CrossRefGoogle Scholar
  16. Imhoff, M., W. Lawrence, C. Elvidge, T. Paul, E. Levine, M. Privalsky, and V. Brown, Using nighttime DMSP/OLS images of city lights to estimate the impact of urban land use on soil resources in the United States, Remote Sens. Environ., 59, 105–117, 1997.CrossRefGoogle Scholar
  17. Intergovernmental Panel on Climate Change Working Group I, Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, 2001.Google Scholar
  18. Keeling, C. D., J. F. S. Chin, and T. P. Whorf, Increased activity of northern vegetation inferred from atmospheric CO2 measurements, Nature, 382, 146–149, 1996.CrossRefGoogle Scholar
  19. Kiehl, J., J. Hack, G. B. Bonan, B. Bonville, D. L. Williamson, and P. J. Rasch, The National Center for Atmospheric Research Community Climate Model: CCM3, J. Climate, 11, 1131–1149, 1998.CrossRefGoogle Scholar
  20. Kimball, J. S., S. W. Running, and R. Nemani, An improved method for estimating surface humidity from daily minimum temperatures, Agric. For. Meteorol., 85, 87–98, 1997.CrossRefGoogle Scholar
  21. Kittel, T. G. F., N. A. Rosenbloom, T. H. Painter, D. S. Schimel, and V. M. Participants, The VEMAP integrated database for modelling United States ecosystem/vegetation sensitivity to climate change, J. Biogeogr., 22, 857–862, 1999.CrossRefGoogle Scholar
  22. Kumar, P., and E. Foufoula-Georgiou, A multicomponent decomposition of spatial rainfall fields, 1. segregation of large-and small-scale features using wavelet transforms, Water Resour. Res., 29, 2515–2532, 1993.CrossRefGoogle Scholar
  23. Kumar, P., and E. Foufoula-Georgiou, Wavelet analysis for geophysical applications, Rev. Geophys., 35, 385–412, 1997.CrossRefGoogle Scholar
  24. Levis, S., J. A. Foley, V. Brovkin, and D. Pollard, On the stability of the high-latitude climate-vegetation system in a coupled atmosphere-biosphere model, Global Ecol. Biogeogr., 8(6), 489–500, 1999.CrossRefGoogle Scholar
  25. Lloyd, D., A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery, Int. J. Remote Sens., 11, 2269–2279, 1990.CrossRefGoogle Scholar
  26. Lu, L. X., and W. J. Shuttleworth, Incorporating NDVI-derived LAI into the climate version of RAMS and its impact on regional climate, J. Hydrometeorol., 3(3), 347–362, 2002.CrossRefGoogle Scholar
  27. Lucht, W., I. C. Prentice, R. B. Myneni, S. Sitch, P. Friedlingstein, W. Cramer, P. Bousquet, W. Buermann, and B. Smith, Climatic control of the high-latitude vegetation greening trend and Pinatubo effect, Science, 296 (5573), 1687–1689, 2002.CrossRefGoogle Scholar
  28. Mallat, S., A Wavelet Tour of Signal Processing, Academic Press, New York, 577 pp., 1999.Google Scholar
  29. Menzel, A., Phenology, its importance to the global change community, Climatic Change, 54, 379–385, 2002.CrossRefGoogle Scholar
  30. Miller, D. A., and R. A. White, A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling (on line), Earth Interactions, paper 1, 1998.Google Scholar
  31. Moulin, S., L. Kergoat, N. Viovy, and G. Dedieu, Global scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements, J. Climate, 10, 1154–1170, 1997.CrossRefGoogle Scholar
  32. Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani, Increased plant growth in the northern high latitudes from 1981 to 1991, Nature, 386, 698–702, 1997a.CrossRefGoogle Scholar
  33. Myneni, R. B., R. R. Nemani, and S. W. Running, Estimation of global leaf area index and absorbed Par using radiative transfer models, IEEE T. Geosci. Remote, 35, 1380–1393, 1997b.CrossRefGoogle Scholar
  34. Myneni, R. B., and D. L. Williams, On the relationship between FAPAR and NDVI, Remote Sens. Environ., 49, 200–211, 1994.CrossRefGoogle Scholar
  35. Nemani, R. R., M. A. White, P. E. Thornton, K. Nishida, S. Reddy, J. Jenkins, and S. Running, Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States, Geophys. Res. Lett., 29, art. no. 1468, 2002.Google Scholar
  36. Percival, D., On estimation of the wavelet variance, Biometrika, 82, 619–631, 1995.CrossRefGoogle Scholar
  37. Potter, C., E. Davidson, D. Nepstad, and C. Reis de Carvalho, Ecosystem modeling and dynamic effects of deforestation on trace gas fluxes in Amazon tropical forests, Forest Ecol. Manag., 152, 97–117, 2001.CrossRefGoogle Scholar
  38. Reed, B. C., J. F. Brown, D. VanderZee, T. R. Loveland, J. W. Merchant, and D. O. Ohlen, Measuring phenological variability from satellite imagery, J. Veg. Sci., 5, 703–714, 1994.CrossRefGoogle Scholar
  39. Schwartz, M. D., B. Reed, and M. A. White, Assessing satellite-derived start-of-season (SOS) measures in the conterminous USA, Int. J. Climatol., 22, 1793–1805, 2002.CrossRefGoogle Scholar
  40. Thornton, P. E., S. W. Running, and M. A. White, Generating surfaces of daily meteorological variables over large regions of complex terrain, J. Hydrol., 190, 214–251, 1997.CrossRefGoogle Scholar
  41. Torrence, C., and G. P. Compo, A practical guide to wavelet analysis, Bull. Amer. Meteorol. Soc., 79, 61–78, 1998.CrossRefGoogle Scholar
  42. Vitousek, P., Beyond global warming: ecology and global change, Ecology, 75, 1861–1876, 1994.CrossRefGoogle Scholar
  43. White, M. A., R. R. Nemani, P. E. Thornton, and S. W. Running, Satellite evidence of phenological differences between urbanized and rural areas of the eastern United States deciduous broadleaf forest, Ecosystems, 5, 260–273, 2002.CrossRefGoogle Scholar
  44. White, M. A., M. D. Schwartz, and S. W. Running, Young students, satellites aid understanding of climate-biosphere link, EOS Trans. AGU, 81, 1,5, 1999.Google Scholar
  45. White, M. A., P. E. Thornton, and S. W. Running, A continental phenology model for monitoring vegetation responses to interannual climatic variability, Global Biogeochem. Cycles, 11, 217–234, 1997.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Michael A. White
    • 1
  • Nathaniel Brunsell
    • 2
  • Mark D. Schwartz
    • 3
  1. 1.Department of AquaticWatershed, and Earth Resources, Utah State UniversityLoganUSA
  2. 2.Department of Civil EngineeringDuke University, Research TriangleNCUSA
  3. 3.Department of GeographyUniversity of Wisconsin- MilwaukeeMilwaukeeUSA

Personalised recommendations