High Altitude Climates

  • David W. Inouye
  • Frans E. Wielgolaski
Part of the Tasks for Vegetation Science book series (TAVS, volume 39)

Abstract

The disappearance of snow cover appears to be the primary factor influencing phenology at high altitudes in the temperate zone. Not enough is known yet about other high-altitude areas without significant snow cover to confirm what is controlling their phenologies. One consequence of the importance of snow in controlling phenology is that flowering, and other phenological events involving both plants and animals, can be highly variable because of variation across years in snowpack depth and across space because of aspect and microsite differences in snow accumulation and melting. A consequence of this variation may be that no single set of phenological and physiological characteristics is optimally adapted to all of this variability, which would then encourage the evolution and maintenance of a diversity of adaptive strategies in high altitude communities.

Key words

Alpine Montane Snowpack Subalpine Rocky Mountains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Adams, V. D., Temporal patterning of blooming phenology in Pedicularis on Mount Rainier, Can. J. Botany, 61, 786–6791, 1983.CrossRefGoogle Scholar
  2. Akhalkatsi, M., and J. Wagner, Reproductive phenology and seed development of Gentianella caucasea in different habitats in the central Caucasus, Flora, 191, 161–168, 1996.Google Scholar
  3. Arroyo, M. T. K., J. J. Armesto, and C. Villagran, Plant phenological patterns in the high Andean Cordillera of central Chile, J. Ecology, 69, 205–223, 1981.CrossRefGoogle Scholar
  4. Bauer, P. J., Bumblebee pollination relationships on the Beartooth Plateau tundra of southern Montana, Amer. J. Botany, 70, 134–144, 1983.CrossRefGoogle Scholar
  5. Beattie, A., D. Breedlove, and P. Ehrlich, The ecology of the pollinators and predators of Frasera speciosa, Ecology, 54, 81–91, 1973.Google Scholar
  6. Billings, W. D., and L. C. Bliss, An alpine snowbank environment and its effects on vegetation, plant development, and productivity, Ecology, 40, 388–397, 1959.CrossRefGoogle Scholar
  7. Billings, W. D., and H. A. Mooney, The ecology of arctic and alpine plants, Biological Reviews of the Cambridge Philosophical Society, 43, 481–529, 1968.CrossRefGoogle Scholar
  8. Bliss, L. C., A comparison of plant development in microenvironments of arctic and alpine tundras, Ecol. Monographs, 26, 303–337, 1956.CrossRefGoogle Scholar
  9. Bliss, L. C., Arctic and alpine plant life cycles, Annual Review of Ecology and Systematics, 2, 405–438, 1971.CrossRefGoogle Scholar
  10. Bradley, N. L., A. C. Leopold, J. Ross, and W. Huffaker, Phenological changes reflect climate change in Wisconsin, Proc. Nat. Acad. Science (USA), 96, 9701–9704, 1999.CrossRefGoogle Scholar
  11. Brown, J. L., S.-H. Li, and N. Bhagabati, Long-term trend toward earlier breeding in an American bird: A response to global warming?, Proc. Nat. Acad. Science(USA), 96, 5565–5569, 1999.CrossRefGoogle Scholar
  12. Caine, N., Declining ice thickness on an alpine lake is generated by increased winter precipitation, Climatic Change, 54, 463–470, 2002.CrossRefGoogle Scholar
  13. Canaday, B. B., and R. W. Fonda, The influence of subalpine snowbanks on vegetation pattern, production, and phenology, Bull. Torrey Botanical Club, 101, 340–350, 1974.CrossRefGoogle Scholar
  14. Cayan, D. R., S. A. Kammerdiener, M. D. Dettinger, J. M. Caprio, and D. H. Peterson, Changes in the onset of spring in the western United States, Bull. Amer. Meteorol. Soc., 82, 399–415, 2001.CrossRefGoogle Scholar
  15. Douglas, G. W., and L. C. Bliss, Alpine and high subalpine plant communities of the North Cascades Range, Washington and British Columbia, Ecol. Monographs, 47, 113–150, 1977.CrossRefGoogle Scholar
  16. Dunne, J. A., J. Harte, and K. J. Taylor, Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods, Ecol. Monographs, 73, 69–86, 2003.CrossRefGoogle Scholar
  17. Fitter, A. H., and R. S. R. Fitter, Rapid changes in flowering time in British plants, Science, 296, 1689–1691, 2002.PubMedCrossRefGoogle Scholar
  18. Forbis, T. A., and P. K. Diggle, Subnivean embryo development in the alpine herb Caltha leptosepala (Ranunculaceae), Can. J. Botany (Revue Canadienne de Botanique), 79, 635–642, 2001.Google Scholar
  19. Galen, C., and M. L. Stanton, Consequences of emergence phenology for reproductive success in Ranunculus adoneus (Ranunculaceae), Amer. J. Botany, 78, 978–988, 1991.CrossRefGoogle Scholar
  20. Galen, C., and M. L. Stanton, Short-term responses of alpine buttercups to experimental manipulations of growing season length, Ecology, 74, 1052–1058, 1993.CrossRefGoogle Scholar
  21. Giorgi, F., W. Hurrell, M. Marinucci, and M. Beniston, Elevation dependency of the surface climate change signal: a model study, J. Climate, 10, 288–296, 1997.CrossRefGoogle Scholar
  22. Gómez, J. M., Phenotypic selection on flowering synchrony in a high mountain plant, Hormathophylla spinosa (Cruciferae), J. Ecology, 81, 605–613, 1993.CrossRefGoogle Scholar
  23. Grabherr, G., M. Gottfried, A. Gruber, and H. Pauli, Patterns and current changes in alpine plant diversity, in Arctic and alpine biodiversity: patterns, causes and ecosystem consequences, Ecological Studies, edited by F. S. Chapin, III and C. Koerner, pp. 167–181, Springer Verlag, Berlin, 1995.Google Scholar
  24. Guisan, A., and J.-P. Theurillat, Equilibrium modeling of alpine plant distribution: how far can we go?, Phytocoenologia, 30, 353–384, 2000.Google Scholar
  25. Heide, O., Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees, Physiologia Plantarum, 88, 531–540, 1993.CrossRefGoogle Scholar
  26. Henry, G. H. R., and U. Molau, Tundra plants and climate change: the International Tundra Experiment (ITEX), Global Change Biology, 3,Suppl. 1, 1–9, 1997.CrossRefGoogle Scholar
  27. Hofer, H. R., Veränderungen in der Vegetation von 14 Gipfeln des Berninagebietes zwischen 1905 und 1985, Berichte des Geobotanischen Instituts der ETH Zürich, Stiftung Rüubel, 58, 39–54, 1992.Google Scholar
  28. Hoffmann, A. J., and M. J. Walker, Growth habits and phenology of drought-deciduous species in an altitudinal gradient, Can. J. Botany, 58, 1789–1796, 1980.CrossRefGoogle Scholar
  29. Holway, J. G., and R. T. Ward, Snow and meltwater effects in an area of Colorado alpine, Amer. Midland Naturalist, 69, 189–197, 1963.CrossRefGoogle Scholar
  30. Holway, J. G., and R. T. Ward, Phenology of alpine plants in northern Colorado, Ecology, 46, 73–83, 1965.CrossRefGoogle Scholar
  31. Inouye, D. W., The ecological and evolutionary significance of frost in the context of climate change, Ecol. Letters, 3, 457–463, 2000.CrossRefGoogle Scholar
  32. Inouye, D. W., B. Barr, K. B. Armitage, and B. D. Inouye, Climate change is affecting altitudinal migrants and hibernating species, Proc. Nat. Acad. Science(USA), 97, 1630–1633, 2000.CrossRefGoogle Scholar
  33. Inouye, D. W., M. Morales, and G. Dodge, Variation in timing and abundance of flowering by Delphinium barbeyi Huth (Ranunculaceae): the roles of snowpack, frost, and La Niña, in the context of climate change, Oecologia, 139, 543–550, 2002.CrossRefGoogle Scholar
  34. Inouye, D. W., and G. H. Pyke, Pollination biology in the Snowy Mts. of Australia, with comparisons with montane Colorado, U. S. A., Australian J. Ecology, 13, 191–210, 1988.CrossRefGoogle Scholar
  35. Jackson, L. E., and L. C. Bliss, Distribution of ephemeral herbaceous plants near treeline in the Sierra Nevada, California, U.S.A., Arctic and Alpine Research, 14, 33–42, 1982.CrossRefGoogle Scholar
  36. Jackson, L.E., and L. C. Bliss, Phenology and water relations of three plant life-forms in a dry treeline meadow, Ecology, 65, 1302–1314, 1984.CrossRefGoogle Scholar
  37. Kelly, D., A. L. Harrison, W. G. Lee, I. J. Payton, P. R. Wilson, and E. M. Schauber, Predator satiation and extreme mast seeding in 11 species of Chionochloa (Poaceae), Oikos, 90, 477–488, 2000.CrossRefGoogle Scholar
  38. Kittel, T. G. F., P. E. Thornton, J. A. Royle, and T. N. Chase, Climates of the Rocky Mountains: historical and future patterns, in Rocky Mountain Futures: An Ecological Perspective, edited by J. Baron, D. Fagre and R. Hauer, pp. 59–82, Island Press, Covelo, CA, 2002.Google Scholar
  39. Knight, D. H., B. S. Rogers, and C. R. Kyte, Understory plant growth in relation to snow duration in Wyoming subalpine forest, Bull. Torrey Botanical Club, 104, 314–319, 1977.CrossRefGoogle Scholar
  40. Kudo, G., Effects of snow-free period on the phenology of alpine plants inhabiting snow patches, Arctic and Alpine Research, 23, 436–443, 1991.CrossRefGoogle Scholar
  41. Kudo, G., Performance and phenology of alpine herbs along a snow-melting gradient, Ecological Research, 7, 297–304, 1992.CrossRefGoogle Scholar
  42. Langvatn, R., S. D. Albon, T. Burkey, and T. H. Clutton Brock, Climate, plant phenology and variation in age of first reproduction in a temperate herbivore, J. Animal Ecology, 65, 653–670, 1996.CrossRefGoogle Scholar
  43. Lynov, Y. S., Phenological inversions in alpine terrain, Western Tien Shan, Ékologiya, 4, 29–33, 1984.Google Scholar
  44. Mark, A. F., Floral initiation and development in New Zealand alpine plants, New Zealand J. Botany, 8, 67–75, 1970.Google Scholar
  45. Melampy, M. N., Flowering phenology, pollen flow and fruit production in the Andean shrub Befaria resinosa, Oecologia, 73, 293–300, 1987.Google Scholar
  46. Meloche, C. G., and P. K. Diggle, Preformation, architectural complexity, and developmental flexibility in Acomastylis rossii (Rosaceae), Amer. J. Botany, 88, 980–991, 2001.CrossRefGoogle Scholar
  47. Merrill, E. H., and M. S. Boyce, Summer range and elk population dynamics in Yellowstone National Park, in The Greater Yellowstone Ecosystem: Redefining America’s Wildlife Heritage, edited by R. B. Keiter and M. S. Boyce, pp. 263–273, Yale University Press, New Haven, 1991.Google Scholar
  48. Mitton, J. B., K. B. Sturgeon, and M. L. Davis, Genetic differentiation in ponderosa pine along a steep elevational transect, Silvae Genetica, 29, 100–103, 1980.Google Scholar
  49. Molau, U., Relationships between flowering phenology and life history strategies in tundra plants, Arctic and Alpine Research, 25, 391–402, 1993.CrossRefGoogle Scholar
  50. Moonen, A. C., L. Ercoli, M. Mariotti, and A. Masoni, Climate change in Italy indicated by agrometeorological indices over 122 years, Agricul. Forest Meteorol., 111, 13–27, 2002.CrossRefGoogle Scholar
  51. Mooney, H. A., K. S. Williams, D. E. Lincoln, and P. R. Ehrlich, Temporal and spatial variability in the interaction between the checkerspot butterfly, Euphydryas calcedona and its principal food source, the Californian shrub, Diplacus aurantiacus, Oecologia, 50, 195–198, 1981.CrossRefGoogle Scholar
  52. Morton, M. L., Comparison of reproductive timing to snow conditions in wild onions and White-Crowned Sparrows at high altitude, Great Basin Naturalist, 54, 371–375, 1994.Google Scholar
  53. Myking, T., and O. M. Heide, Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens, Tree Physiology, 15, 697–704, 1995.PubMedGoogle Scholar
  54. Peñuelas, J., and I. Filella, Responses to a warming world, Science, 294, 793–795, 2001.PubMedCrossRefGoogle Scholar
  55. Peñuelas, J., I. Filella, and P. Comas, Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region, Global Change Biology, 8, 531–544, 2002.CrossRefGoogle Scholar
  56. Ralph, C. P., Observations on Azorella compacta (Umbelliferae), a tropical Andean cushion plant, Biotropica, 10, 62–67, 1978.CrossRefGoogle Scholar
  57. Ratcliffe, M. J., and R. Turkington, Comparative phenology of some alpine vascular plant species on Lakeview Mountain, Southern British Columbia, Canadian Field Naturalist, 103, 348–352, 1989.Google Scholar
  58. Rees, M., D. Kelly, and O. N. Bjornstad, Snow tussocks, chaos, and the evolution of mast seeding, Amer. Naturalist, 160, 44–59, 2002.CrossRefGoogle Scholar
  59. Resvoll, T. R., Om planter som passer til kort og kold sommer (in Norwegian), Arciv Mathematik Naturvidenskab, 35, 1–224, 1917.Google Scholar
  60. Reynolds, D. N., Alpine annual plants: phenology, germination, photosynthesis, and growth in three Rocky Mountain species, Ecology, 65, 759–766, 1984.CrossRefGoogle Scholar
  61. Richardson, S. G., and F. B. Salisbury, Plant responses to the light penetrating snow, Ecology, 58, 1152–1158, 1977.CrossRefGoogle Scholar
  62. Roy, D. B., and T. H. Sparks, Phenology of British butterflies and climate change, Global Change Biology, 6, 407–416, 2000.CrossRefGoogle Scholar
  63. Sagarin, R., and F. Micheli, Climate change in nontraditional data sets, Science, 294, 811, 2001.PubMedCrossRefGoogle Scholar
  64. Sakin, M., J. F. Hancock, and J. J. Luby, Identifying new sources of genes that determine cyclic flowering in Rocky Mountain populations of Fragaria virginiana ssp glauca Staudt, J. Amer. Soc. Hort. Science, 122, 205–210, 1997.Google Scholar
  65. Schuster, W. S., D. L. Alles, and J. B. Mitton, Gene flow in limber pine: evidence from pollination phenology and genetic differentiation along an elevational transect, Amer. J. Botany, 76, 1395–1403, 1989.CrossRefGoogle Scholar
  66. Stanton, M. L., and C. Galen, Life on the edge: Adaptation versus environmentally mediated gene flow in the snow buttercup, Ranunculus adoneus, Amer. Naturalist, 150, 143–178, 1997.CrossRefGoogle Scholar
  67. Stanton, M. L., C. Galen, and J. Shore, Population structure along a steep environmental gradient: Consequences of flowering time and habitat variation in the snow buttercup, Ranunculus adoneus, Evolution, 51, 79–94, 1997.Google Scholar
  68. Stenström, M., and U. Molau, Reproductive ecology of Saxifraga oppositifolia: phenology, mating system, and reproductive success, Arctic and Alpine Research, 24, 337–343, 1992.CrossRefGoogle Scholar
  69. Suzuki, S., and G. Kudo, Responses of alpine shrubs to simulated environmental change during three years in the mid-latitude mountain, northern Japan, Ecography, 25, 553–564, 2000.CrossRefGoogle Scholar
  70. Taylor, O. R., Jr., and D. W. Inouye, Synchrony and periodicity of flowering in Frasera speciosa (Gentianaceae), Ecology, 66, 521–527, 1985.CrossRefGoogle Scholar
  71. Theurillat, J. P., and A. Guisan, Potential impact of climate change on vegetation in the European Alps: A review, Climatic Change, 50, 77–109, 2001.CrossRefGoogle Scholar
  72. Theurillat, J. P., and A. Schlüssel, Phenology and distribution strategy of key plant species within the subalpine-alpine ecocline in the Valaisan Alps (Switzerland), Phytocoenologia, 30, 439–456, 2000.Google Scholar
  73. Totland, Ø. Pollination in alpine Norway: flowering phenology, insect visitors, and visitation rates in two plant communities, Can. J. Botany (Revue Canadienne de Botanique), 71, 1072–1079, 1993.CrossRefGoogle Scholar
  74. Totland, Ø. Effects of flowering time and temperature on growth and reproduction in Leontodon autumnalis var. taraxaci a late-flowering alpine plant, Arctic and Alpine Research, 29, 285–290, 1997.CrossRefGoogle Scholar
  75. Visser, M. E., and L. J. M. Holleman, Warmer springs disrupt the synchrony of oak and winter moth phenology, Proceedings of the Royal Society B, 268, 1–6, 2001.CrossRefGoogle Scholar
  76. Wagner, J., and E. Mitterhofer, Phenology, seed development, and reproductive success of an alpine population of Gentianella germanica in climatically varying years, Botanica Acta, 111, 159–166, 1998.Google Scholar
  77. Wagner, J., and B. Reichegger, Phenology and seed development of the alpine sedges Carex curvula and Carex firma in response to contrasting topoclimates, Arctic and Alpine Research, 29, 291–299, 1997.CrossRefGoogle Scholar
  78. Walker, M. D., R. C. Ingersoll, and P. J. Webber, Effects of interannual climate variation on phenology and growth of two alpine forbs, Ecology, 76, 1067–1083, 1995.CrossRefGoogle Scholar
  79. Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Pamesan, T. J. C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein, Ecological responses to recent climate change, Nature, 416, 389–395, 2002.PubMedCrossRefGoogle Scholar
  80. Wardle, P., Alpine timberlines, in Arctic and alpine environments, edited by J. D. Ives and R. G. Barry, pp. 371–402, Methuen, London, 1974.Google Scholar
  81. Wielgolaski, F. E., and L. Kärenlampi, Plant phenology of Fennoscandinan tundra areas, in Fennoscandian Tundra Ecosystems, Part 1., vol. 16, Ecological Studies: Analysis and Synthesis, edited by F. E. Wielgolaski, pp. 94–102, Springer-Verlag, Berlin, 1975.Google Scholar
  82. Williams, M. C., and E. H. Cronin, Dormancy, longevity, and germination of seeds of three larkspurs and western false hellebore, Weeds, 8, 452–461, 1968.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • David W. Inouye
    • 1
  • Frans E. Wielgolaski
    • 2
  1. 1.Department of BiologyUniversity of MarylandCollege ParkUSA
  2. 2.Department of BiologyUniversity of OsloOsloNorway

Personalised recommendations